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Motivation
Constrained Separation Problems

Given a graph G and vertices s, t, find a smallest s − t separator

Using network flow techniques (for eg. Ford Fulkerson Algo) can be
solved in polynomial time

Adding constraints to the problem (for eg. stable cut problem)
makes the problem NP-Hard

In this case, we parameterize the problem with the size of the
separator
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Treewidth - (tw)

Def:- Tree Decomposition and Treewidth (tw)

A tree decomposition of a graph G (V ,E ) is a pair (T ,B) in which
T (I ,F ) is a tree and B = {Bi | i ∈ I} is a family of subsets of V (G ) such
that

1
⋃

i∈I Bi = V

2 for each edge e = (u, v) ∈ E , there exists an i ∈ I such that both u
and v belong to Bi ; and

3 for every v ∈ V , the set of nodes {i ∈ I | v ∈ Bi} forms a connected
subtree of T

width of the tree decomposition: size of largest bag in B minus 1

treewidth: minimum width over all the possible tree decompositions
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Treewidth (tw)

Treewidth

Tree decomposition: Vertices are arranged in a
tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag
containing both of them.

2. For every vertex v , the bags containing v form
a connected subtree. h
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Treewidth

Tree decomposition: Vertices are arranged in a
tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag
containing both of them.

2. For every vertex v , the bags containing v form
a connected subtree.

Width of decomposition: largest bag size −1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 ⇐⇒ graph is a forest
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Figure: Sequence of Separators 1

1Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal, Marx
et. al.
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Bramble Number - (bn)

Def:- Bramble

A bramble of a graph is a family of connected subgraphs of G such that
any two of these subgraphs have either non-empty intersection or are
joined by an edge.
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Bramble Number - (bn)

Def:- Order of a bramble

The order of a bramble is the least number of vertices required to cover
all the subgraphs in the bramble.

Def:- bramble number (bn)

The bramble number bn(G ) of a graph is the largest order of a bramble
of G .
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Relation between bn and tw

Theorem (Seymour And Thomas [1993])

For every graph G , bn(G ) = tw(G ) + 1
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Fixed Parameter Tractable (FPT )

Def:- Fixed Parameter Tractable (FPT )

A problem is said to be fixed parameter tractable (or FPT ) with respect
to the parameter k if instances of size n can be solved in time
f (k) · n(O(1)).

A problem is said to be linear-time FPT with parameter k if it can be
solved in time f (k) · n for some function f .
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Courcelle’s Theorem

Courcelle [1990]

If a graph property can be described as a formula φ in the Monadic
Second Order Logic of Graphs, then it can recognized in time
fφ(tw(G )) · (|E (G )|+ |V (G )|) if a given graph G has this property.
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Separators

Def:- Separators

We say that a set of vertices S separates sets of vertices A and B if no
component of G \ S contains vertices from both A \ S and B \ S .

If s and t are two different vertices of G , then an s − t separator is a set
S of vertices disjoint from {s, t} such that s and t are in different
components of G \ S .
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Torso

Def:- Torso

Let G be a graph and C ⊆ V (G ). The graph torso(G ,C ) has vertex set
C and vertices a, b ∈ C are connected by an edge if (a, b) ∈ E (G ) or
there is a path P in G connecting a and b whose internal vertices are not
in C .
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Torso

Content

Treewdith Reduction Theorem

The Algorithmic Motivation

Proof Idea

Concluding remarks

Minimal s � t separator

Torso graph

Treewidth reduction theorem

Torso graph

Given a graph G and a set C of vertices.
Take G [C ].
Add edges between vertices adjacent to connected
components of G \ C .
The resulting graph is called torso(G ,C ).

Treewidth reduction and algorithmic applications
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Properties of Torso

Proposition

Let G be a graph. For sets C1 ⊆ C2 ⊆ V (G ), we have
torso(torso(G ,C2),C1) = torso(G ,C1)
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Properties of Torso

Proposition

Let G be a graph. For sets C1 ⊆ C2 ⊆ V (G ), we have
torso(torso(G ,C2),C1) = torso(G ,C1)

C1

V (G)
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Properties of Torso

Proposition

Let G be a graph. For sets C ,S ⊆ V (G ), we have that
torso(G \ S ,C \ S) is a subgraph of torso(G ,C ) \ S
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Properties of Torso

Proposition

Let G be a graph. For sets C ,S ⊆ V (G ), we have that
torso(G \ S ,C \ S) is a subgraph of torso(G ,C ) \ S

V (G)

C

S
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Separator in Torso

Proposition

Let C1 ⊆ C2 be two sets of vertices in G and

let a, b ∈ C1 be two vertices, then

A set S ⊆ C1 separates a, b in torso(G ,C1) if and only if S separates
these vertices in the torso(G ,C2)

Contrapositive: For the vertices a, b ∈ C1, S ⊆ C1 does not separates
these vertices in the torso(G ,C2) if and only if it does not separates them
in the torso(G ,C1).
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Separator in Torso
Proof
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Collection X

Lemma

Let s, t be two vertices such that minimum size of an s − t separator is
` > 0. Then there is a collection X = {X1,X2, . . . ,Xq} of sets where
{s} ⊆ Xi ⊆ V (G ) \ ({t} ∪ N({t})) (1 ≤ i ≤ q), such that

1 X1 ⊂ X2 ⊂ · · · ⊂ Xq

2 |N(Xi )| = ` for every 1 ≤ i ≤ q, and

3 every s − t separator of size l is fully contained in
⋃q

i=1 N(Xi )

Furthermore, there is an O(`(|V |+ |E |)) time algorithm that produces
sets X1,X2 \ X1, . . . ,Xq \ Xq−1 corresponding to such a collection X .
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Collection X

X1

X2

X3

S0 = {s}

S1 S2

L1 L2 Sq+1 = {t}

Figure 1: Schematic illustration of the first few sets Si and Li in the proof of Lemma 2.11. The illustration
is simplified, e.g., it does not take into account that Si−1 and Si are not necessarily disjoint.

Claim 2.12. If a vertex v ∈ Li is in C, then there are disjoint non-empty subsets A,B of Si∪Si−1 such that v
is part of a minimal a−b separator K2 in Gi,A,B of size at most k (recall that k = ℓ+ e) and excess at most
e−1.

Proof. By definition of C, there is a minimal s− t separator K of size at most k that contains v. Let K1 :=
K \Li and K2 := K∩Li. Partition (Si∪Si−1)\K into the set A of vertices reachable from s in G\K and the
set B of vertices non-reachable from s in G \K. Let us observe that both A and B are non-empty. Indeed,
due to the minimality of K, G has a path P from s to t such that V (P)∩K = {v} ⊆ Li. By selection of v,
Si−1 separates v from s and Si separates v from t. Therefore, at least one vertex u of Si−1 occurs in P before
v and at least one vertex w of Si occurs in P after v. The prefix of P ending at u and suffix of P starting at
w are both subpaths in G \K. It follows that u is reachable from s in G \K, i.e. belongs to A and that w is
reachable from t in G\K, hence non-reachable from s and thus belongs to B.

To see that K2 is an a−b separator in Gi,A,B, suppose that there is a path P connecting a and b in Gi,A,B
avoiding K2. Then there is a corresponding path P′ in G connecting a vertex of A and a vertex of B. Path P′

is disjoint from K1 (since it contains vertices of Li and (Si ∪Si−1)\K only) and from K2 (by construction).
Thus a vertex of B is reachable from s in G\K, a contradiction.

To see that K2 is a minimal a− b separator, suppose that there is a vertex u ∈ K2 such that K2 \{u} is
also an a− b separator in Gi,A,B. Since K is minimal, there is an s− t path P in G \ (K \ u), which has to
pass through u. Arguing as when we proved that A and B are non-empty, we observe that P includes vertices
of both A and B, hence we can consider a minimal subpath P′ of P between a vertex a′ ∈ A and a vertex
b′ ∈ B. We claim that all the internal vertices of P′ belong to Li. Indeed, due to the minimality of P′, an
internal vertex of P′ can belong either to Li or to V (G) \ (K1 ∪Li∪ Si−1∪ Si). If all the internal vertices of
P′ are from the latter set then there is a path from a′ to b′ in G \ (K1 ∪ Li) and hence in G \ (K1 ∪K2) in
contradiction to b′ ∈ B. If P′ contains internal vertices of both sets then G has an edge {u,w} where u ∈ Li
while w ∈V (G)\ (K1∪Li∪Si−1∪Si). But this is impossible since Si−1∪Si separates Li from the rest of the

9

Figure: Sequence of Separators 2

1Treewidth Reduction Lemma, Marx et. al.
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Collection X
Proof
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Collection X
Proof

s

a

b

c

d

e

t

1

1

1

1

1

1

1

s1

s2

a1

a2

b2

b1

c1

c2

d2

d1

e1

e2

t2

t1



Motivation Basic Definitions Tw bound on Minimal s-t separators Constrained Separation Problems

Collection X
Proof

Let Y ⊆ V (D) and ∆+
D(Y ) are the set of edges leaving Y

F ⊂ E (D) is s2 − t1 cut

set S ⊆ V (G ) is an s − t separator iff the corresponding set
{−−→v1v2 | v ∈ S} is an s2 − t1 cut

if we can find

{s2} ⊂ Y1 ⊂ Y2 · · · ⊂ Yq ⊆ V (D) \ {t1}
such that ∆+

D(Y ) = ` for every 1 ≤ i ≤ q, and
and all s2 − t1 cut of weight ` is contained in

⋃q
i=1 ∆+

D(Y )

then the sets Yi corresponds to set Xi i.e. Xi contains those vertices
v for which v1, v2 ∈ Yi and v ∈ N(Xi ) iff the corresponding arc −−→v1v2

is in ∆+
D(Yi ).
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Collection X
Proof

Run ` rounds of the Ford-Fulkerson algo on network D to get
maximum s2 − t1 flow

Let D ′ be the residual graph

Let C1,C2, . . .Cq be a topological order of the strongly connected
components of D ′ (i.e. i < j whenever there is a path from Ci to Cj)

There is no s2 → t1 path, but there is an t1 → s2 path

If t1 is in Cx and s2 is in Cy , then x < y

For every x < i ≤ y , let Yi :=
⋃q

j=i Cj
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Collection X
Proof

Claim

Capacity of ∆+
D(Yi ) = `

Proof

No arc leaves Yi in the residual graph D ′ (by definition of Yi )

i.e. Every edge leaving Yi is D is saturated and no more flow enters
Yi

As s2 ∈ Cy ⊆ Yi and t1 ∈ Cx ⊆ V (G ) \ Yi , this is only possible if
∆+

D(Yi ) = `

What remains to show is that every arc contained in s2 → t1 cut of
weight ` is covered by one of the ∆+

D(Yi )
′s
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Collection X
Proof

Claim

Every arc contained in s2 → t1 cut of weight ` is covered by one of the
∆+

D(Yi )
′s

Proof

Let F be an s2 → t1 cut of weight ` (i.e. ∆+
D(Yi ) = `)

Let Y = {v | s2 → v path in G [D \ F ]}
Consider an arc

−→
ab ∈ F (

−→
ab is saturated as F is minimum cut)

Hence, there is an
−→
ba in D ′ (residual graph)

Claim is arc
−→
ba does not appear in any cycle of D ′

If not, then there is an arc
−→
cd that leaving Y in D
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Collection X
Proof

Proof

An arc like
−→
cd cannot exist, as every arc leaving Y in D is saturated

and no flow enters Y

Thus a and b are in different strongly connected components Cia

and Cib for some ib < ia

As there is a flow from s2 to a, there is an a→ s2 path in D ′, and
hence ia ≤ y

As there is a flow from b to t1, there is an t1 → b path in D ′, and
hence ib ≥ x

Thus we have x ≤ ib < ia ≤ y

Yia is well defined and,
−→
ab of D is contained in ∆+

D(Yia)
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Bounding bn

Lemma

Let G be a graph and C1,C2, . . . ,Cr be the subsets of V (G ) and let
C :=

⋃r
i=1 Ci . Then we have bn(torso(G ,C )) ≤∑r

i=1 bn(torso(G ,Ci ))

Let B is the bramble of G having order bn(G ).

For every 1 ≤ i ≤ r , let Bi = {B⋂
Ci | B ∈ B,B ∩ Ci 6= φ}
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Bounding bn

Claim

Bi is a bramble of torso(G ,Ci )

That is, need to show that B ∩ Ci ∈ Bi is connected and sets in Bi
pairwise touch

Proof

Part-I: To show B ∩ Ci ∈ Bi is connected

Consider two vertices x , y ∈ B
⋂
Ci

B ∈ B is connected (by definition)

There exists a path between x , y in B

Thus, the nodes x , y ∈ B
⋂
Ci are connected in torso(G ,Ci )
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Bounding bn

Proof (Cont. . . )

Part-II: To show sets in Bi ’s pairwise touch

B1 and B2 touch in G (as per the definition of bramble)

Therefore, there are vertices x ∈ B1 and y ∈ B2, such that either
x = y or x and y are adjacent.

Case-1: If those vertices x , y ∈ Ci , then it is clear that B1 ∩ Ci and
B2 ∩ Ci touch each other

Case-2: If those vertices x , y /∈ Ci , then x must be connected to
some u ∈ B1 ∩ Ci and y must be connected to some v ∈ B2 ∩ Ci

This leads to addition of an edge (u, v) for u ∈ B1 ∩ Ci and
v ∈ B2 ∩ Ci in torso(G ,Ci ).
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Bounding bn and tw

Lemma

Let C ′ ⊆ V (G ) be a set of vertices and let R1,R2, . . . ,Rr be the
components of G \ C ′

. For every 1 ≤ i ≤ r , let C
′

i ⊆ Ri be the subsets

and let C
′′

:= C ′
⋃r

i=1 C
′

i . Then we have

tw(torso(G ,C
′′

)) ≤ tw(torso(G ,C ′)) +
r

max
i=1

tw(torso(G [Ri ],C
′

i )) + 1

bn(torso(G ,C
′′

)) ≤ bn(torso(G ,C ′)) +
r

max
i=1

bn(torso(G [Ri ],C
′

i ))
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Bounding bn and tw

Proof

Let T be the tree decomposition of torso(G ,C ′) having width at
most w1 and let Ti be the tree decomposition of torso(G [Ri ],C

′

i )
having width at most w2.

Let Ni ⊆ C ′ be the N(Ri ) in G

Ni induces a clique in torso(G ,C ′), we have |Ni | ≤ w1 + 1 and there
is a bag Bi of T containing Ni

Modify Ti by including Ni to every bag in Ti and join T and Ti by
connecting an arbitrary bag of Ti to Bi . Do this for every 1 ≤ i ≤ r

Thus the tree decomposition now has width at most w1 + w2 + 1

Claim: This is tree decomposition for torso(G ,C
′′

)
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Bounding bn and tw

Consider two vertices x , y ∈ C
′′

that are adjacent in torso(G ,C
′′

)

Proof (Cont. . . )

Case-1: if x , y ∈ C ′, then they are adjacent in torso(G ,C ′) as well
and hence they appear in the bag of T

Case-2: if x , y ∈ C
′

i , then all the vertices of P are in Ri . Thus, they

are adjacent in torso(G [Ri ],C
′

i ) and hence they appear in the bag of
Ti

Case-3: if x ∈ C ′ and y ∈ C
′

i then x ∈ Ni and every bag of Ti

containing y was extended with Ni
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Bounding tw

COROLLARY

For every graph G , set C ,X ⊆ V (G ), we have

tw(torso(G ,C ∪ X )) ≤ tw(torso(G ,C )) + |X |



Motivation Basic Definitions Tw bound on Minimal s-t separators Constrained Separation Problems

Constructing a set of minimal st separators

Def: excess of separator

If the minimum size of the separator is `, then the excess of an s − t
separator |S | is e = |S | − `

“Our aim is to have s − t separators of size at most k, which is
equivalent to getting all the s − t separators of excess at most e”
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Constructing a set of minimal s − t separators

Lemma

Let s, t be two vertices of graph G and let ` be the size of an minimum
s − t separator. For some e > 0, let C be the union of all minimal s − t
separators having excess at most e (i.e. having size at most k = `+ e).
Then there is an f (`, e) · (|E (G )|+ |V (G )|) time algorithm that returns a
set C ′ ⊇ C disjoint from {s, t} such that bn(torso(G ,C ′)) ≤ g(`, e), for
some functions f and g depending only on ` and e.
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Constructing a set of minimal s − t separators

Recall the collection X

X1

X2

X3

S0 = {s}

S1 S2

L1 L2 Sq+1 = {t}

Figure 1: Schematic illustration of the first few sets Si and Li in the proof of Lemma 2.11. The illustration
is simplified, e.g., it does not take into account that Si−1 and Si are not necessarily disjoint.

Claim 2.12. If a vertex v ∈ Li is in C, then there are disjoint non-empty subsets A,B of Si∪Si−1 such that v
is part of a minimal a−b separator K2 in Gi,A,B of size at most k (recall that k = ℓ+ e) and excess at most
e−1.

Proof. By definition of C, there is a minimal s− t separator K of size at most k that contains v. Let K1 :=
K \Li and K2 := K∩Li. Partition (Si∪Si−1)\K into the set A of vertices reachable from s in G\K and the
set B of vertices non-reachable from s in G \K. Let us observe that both A and B are non-empty. Indeed,
due to the minimality of K, G has a path P from s to t such that V (P)∩K = {v} ⊆ Li. By selection of v,
Si−1 separates v from s and Si separates v from t. Therefore, at least one vertex u of Si−1 occurs in P before
v and at least one vertex w of Si occurs in P after v. The prefix of P ending at u and suffix of P starting at
w are both subpaths in G \K. It follows that u is reachable from s in G \K, i.e. belongs to A and that w is
reachable from t in G\K, hence non-reachable from s and thus belongs to B.

To see that K2 is an a−b separator in Gi,A,B, suppose that there is a path P connecting a and b in Gi,A,B
avoiding K2. Then there is a corresponding path P′ in G connecting a vertex of A and a vertex of B. Path P′

is disjoint from K1 (since it contains vertices of Li and (Si ∪Si−1)\K only) and from K2 (by construction).
Thus a vertex of B is reachable from s in G\K, a contradiction.

To see that K2 is a minimal a− b separator, suppose that there is a vertex u ∈ K2 such that K2 \{u} is
also an a− b separator in Gi,A,B. Since K is minimal, there is an s− t path P in G \ (K \ u), which has to
pass through u. Arguing as when we proved that A and B are non-empty, we observe that P includes vertices
of both A and B, hence we can consider a minimal subpath P′ of P between a vertex a′ ∈ A and a vertex
b′ ∈ B. We claim that all the internal vertices of P′ belong to Li. Indeed, due to the minimality of P′, an
internal vertex of P′ can belong either to Li or to V (G) \ (K1 ∪Li∪ Si−1∪ Si). If all the internal vertices of
P′ are from the latter set then there is a path from a′ to b′ in G \ (K1 ∪ Li) and hence in G \ (K1 ∪K2) in
contradiction to b′ ∈ B. If P′ contains internal vertices of both sets then G has an edge {u,w} where u ∈ Li
while w ∈V (G)\ (K1∪Li∪Si−1∪Si). But this is impossible since Si−1∪Si separates Li from the rest of the

9

Figure: Sequence of Separators 3

1Treewidth Reduction Lemma, Marx et. al.
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Constructing a set of minimal s − t separators

X0 = φ, Xq+1 = V (G ) \ {t}
Si = N(Xi ) for 1 ≤ i ≤ q

S0 : {s}, Sq+1 = {t}
For 1 ≤ i ≤ q + 1, let Li = Xi \ (Xi−1

⋃
Si−1) (L′i s are pairwise

disjoint)

For 1 ≤ i ≤ q + 1 and two disjoint non-empty subsets A,B of
Si ∪ Si−1, define Gi,A,B to be the graph obtained from G [Li ∪ A ∪ B]
by contracting the set A to vertex a and B to vertex b.
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Constructing a set of minimal s − t separators

Claim

If a vertex v ∈ Li is in C , then there are disjoint non-empty subsets A,B
of Si ∪ Si−1 such that v is part of a minimal a− b separator K2 in Gi,A,B

of size at most k (recall k = `+ e) and excess at most e − 1.
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Constructing a set of minimal s − t separators

K2

A

B

Si�1 Si

v

w

u K1

K1

s

t
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Constructing a set of minimal s − t separators

Claim

K2 is an a− b separator

Proof

K1 := K \ Li , K2 := K ∩ Li

Partition (Si−1 ∪ Si ) \ K into set A that is reachable from s and set
B not reachable from s in G \ K
If not then there is a path P ′ connecting a and b, which is disjoint
from K2 and also K1

Path P1 in G from s to a and P2 in G from b to t and combine
(P1,P

′,P2).

Which is contradiction for K being an separator
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Constructing a set of minimal s − t separators

Claim

K2 is an minimal a− b separator

Proof

Suppose not, then ∃x ∈ K2 such that K2 \ {x} is still an a− b
separator

K is an minimal separator (given), therefore, ∃ a s − t path P in
G \ K \ {x} that passes through x ∈ K2

This path P also intersects a and b. Which implies that there is a
subpath P ′ in P that is disjoint from K2 and thus K2 is not an a− b
separator
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Constructing a set of minimal s − t separators

Claim

K2 has excess at most e − 1 in Gi,A,B which is formed from G [Li ∪A∪B]

Proof

Let K
′

2 be an minimum a− b separator in Gi,A,B

Now K1 ∪ K
′

2 is a separator in G (if not, then as similar to previous
claim K

′

2 is not a− b separator)

Also, K1 ∪ K
′

2 contains some vertex from Li , thus, it is not an
minimum separator in G (as all minimum separators are in ∪qi=1Si )

Therefore, |K1 ∪ K
′

2| > `

|K2| − |K
′

2| = (|K1|+ |K2)− (|K1|+ |K
′

2|) < k − ` i.e. at most e − 1
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Constructing a set of minimal s − t separators

Claim

K2 has excess at most e − 1 in Gi,A,B which is formed from G [Li ∪A∪B]

Proof

Let K
′

2 be an minimum a− b separator in Gi,A,B

Now K1 ∪ K
′

2 is a separator in G (if not, then as similar to previous
claim K

′

2 is not a− b separator)

Also, K1 ∪ K
′

2 contains some vertex from Li , thus, it is not an
minimum separator in G (as all minimum separators are in

⋃q
i=1 Si )

Therefore, |K1 ∪ K
′

2| > `

|K2| − |K
′

2| = (|K1|+ |K2)− (|K1|+ |K
′

2|) < k − ` i.e. at most e − 1
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Constructing a set of minimal s − t separators

Let C0 =
⋃q

i=1 Si (s, t does not belong to C0)

For e = 0, return C ′ = C0

Also, tw(torso(G ,C0)) ≤ 2`− 1 i.e. bags
S1

⋃
S2,S2

⋃
S3, . . . ,Sq−1

⋃
Sq define the tree decomposition of

width at most 2`− 1 (base case)



Motivation Basic Definitions Tw bound on Minimal s-t separators Constrained Separation Problems

Constructing a set of minimal s − t separators

Assume now that e > 0

For every non-empty subsets A,B of Si−1

⋃
Si , the induction

assumption implies that there exists a set C
′

i,A,B ⊆ Li such that

bn(torso(Gi,A,B ,C
′

i,A,B)) ≤ g(`, e − 1) and C
′

i,A,B contains every
inclusion-wise minimal a− b separator of size at most k and excess
at most e − 1 in Gi,A,B

Let C ′ be the union of C0 and all the sets C
′

i,A,B

Any vertex v participating in a minimal separator of size at most k
belongs to C ′: C0 adds the nodes for the separators of size ` and if
the size of the separator is greater than ` then by the previous claim
v is contained in some C

′

i,A,B
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Constructing a set of minimal s − t separators

Claim

bn for torso(G ,C ′) is bounded by the function g(`, e)

Proof

Each component of G \ C0 is fully contained in some Li

Let C
′

i be the union of the at most 32` sets C
′

i,A,B , for non-empty
subsets A,B of Si−1

⋃
Si

Therefore, bn(torso(G [Li ],C
′

i )) ≤ 32` · g(`, e − 1)

That is we have same bound on the bn(torso(G [R],C ′
⋂

R)) for
every component R of G \ C0

Therefore, bn for torso(G ,C ′) ≤ 2`+ 32` · g(`, e − 1)
(tw(torso(G ,C0)) ≤ 2`− 1)
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Constructing a set of minimal s − t separators

Claim

The set C ′ can be constructed in time f (`, e) · (|E (G )|+ |V (G )|) for an
appropriate function f (`, e)

Proof

We will prove this by induction on e. For e = 0 we have already shown
the construction of C0 in time O(` · (|E (G )|+ |V (G )|)) (base case)
Assume e > 0.

For each Li explore all the possible non-empty subsets A,B of
Si−1 ∪ Si

Let mi = |E (G [Li ])|, which implies |E (Gi,A,B)| ≤ mi + 2|Li | (at most
|Li | edges from a and b each)

Check if size of minimum a− b separator is of size at most k, which
can be done in O(k(mi + 2|Li |)) time (using k rounds of
Ford-Fulkerson)

If yes, compute C
′

i,A,B recursively
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Constructing a set of minimal s − t separators

Proof

Number of steps required for layer i is O(32` · k(mi + 2|Li |)) (not
considering the recursion calls)

By induction assumption each of the at most 32` recursive calls
takes at most f (`, e − 1) · (mi + 2|Li |) steps

Therefore, the overall running time is:

O(k(|E(G)|+ |V (G)|)) +

q+1∑
i=1

O(32` · k(mi + 2|Li |)) + 32`f (`, e−1) · (mi + 2|Li |)

≤ O(k(|E(G)|+|V (G)|))+O(32`·k(|E(G)|+2|V (G)|))+32`f (`, e−1)·(|E(G)|+2|V (G)|)

≤ f (`, e) · (|E(G)|+ 2|V (G)|)
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Treewidth Reduction Theorem (TRT)

Theorem (Treewidth Reduction Theorem)

Let G be a graph, T ⊆ V (G ), and let k be an integer. Let C be the set
of all the vertices of G participating in a minimal s − t separator of size
at most k for some s, t ∈ T, there is a linear-time algorithm that
computes a graph G∗ having the following properties:

1 C
⋃
T ⊆ V (G∗)

2 For every s, t ∈ T, a set K ⊆ V (G∗) with |K | ≤ k is a minimal
s − t separator of G∗ iff K ⊆ C

⋃
T and K is a minimal s − t

separator in G

3 The treewidth of G∗ is at most h(k , |T |) for some function h

4 G∗[C
⋃
T ] is isomorphic to G [C

⋃
T ]. i.e. For any K ⊆ C, G∗[K ]

is isomorphic to G [K ]



Motivation Basic Definitions Tw bound on Minimal s-t separators Constrained Separation Problems

Treewidth Reduction Theorem (TRT)

Proof.

For every s, t ∈ T that can be separated by the removal of at most
k vertices, we have shown how to compute the sets C

′

s,t containing
all the minimal s − t separators of size at most k

Let C ′ =
⋃(|T|

2 )
i=1 C

′

s,t , then tw(torso(G ,C ′)) is bounded by the
function of k and |T |
Also, tw(G∗) = tw(torso(G ,C ′ ∪ T )) is bounded as well

But, two vertices of C ′ not adjacent in G may be adjacent in
G ′ = torso(G ,C ′ ∪ T )

Fix: for each edge (u, v) ∈ E (G ′) \ E (G ) introduce k + 1 new
vertices w1,w2, . . . ,wk+1 and replace edge (u, v) with the set of
edges {(u,w1), . . . , (u,wk+1), (w1, v) . . . (wk+1, v)}.
Let G∗ be the resulting graph
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Hereditary Graph Classes

Def:- Hereditary Graph Classes

Let G be a class of graphs. Then G is said to be hereditary if for every
G ∈ G and X ⊆ V (G ), we have G [X ] ∈ G

“Thus, if we can construct a graph G∗ using the TRT for T = s, t, then
G has an s − t separator of size at most k that induces a member of G iff

G∗ has such a separator”
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Hereditary Graph Classes

Def:- Hereditary Graph Classes

Let G be a class of graphs. Then G is said to be hereditary if for every
G ∈ G and X ⊆ V (G ), we have G [X ] ∈ G

“Thus, if we can construct a graph G∗ using the TRT for T = s, t, then
G has an s − t separator of size at most k that induces a member of G iff

G∗ has such a separator”
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G −MINCUT Problem

G −MINCUT Problem

Given a graph G , vertices s and t, and a parameter k , find a s − t
separator C of size at most k such that G [C ] ∈ G.

Theorem

Assume that G is decidable and hereditary. Then, the G −MINCUT
problem is FPT
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G −MINCUT Problem

G −MINCUT Problem

Given a graph G , vertices s and t, and a parameter k , find a s − t
separator C of size at most k such that G [C ] ∈ G.

Theorem

Assume that G is decidable and hereditary. Then, the G −MINCUT
problem is FPT
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G −MINCUT Problem

Proof

Let G∗ be the graph that is constructed using the TRT for
S = {s, t} computed in FPT time

Claim: (G , s, t, k) is a ‘YES’ instance of G −MINCUT problem iff
(G∗, s, t, k) is a ‘YES’ instance

Let K be an minimal s − t separator in G such that |K | ≤ k and
G [K ] ∈ G
Using 2nd and 4th properties of TRT for G∗, K separates s and t in
G∗ and G∗[K ] ∈ G.

The other direction can be proved in similar way

Thus we have established an FPT -time reduction from an instance
of G −MINCUT problem to another instance of this problem where
the treewidth is bounded by the function of parameter k.

Now, the treewidth reduced instance can be solved using Courcelle’s
theorem.
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G −MINCUT Problem

Corollary

Minimum Stable s − t Cut is linear-time FPT

“But some of these problems become hard if the size of the separator is
required to be exactly k”
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G −MINCUT Problem

Corollary

Minimum Stable s − t Cut is linear-time FPT

“But some of these problems become hard if the size of the separator is
required to be exactly k”
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G −MINCUT Problem

Theorem

It is W [1]-hard (parameterized by k) to decide if G has an s − t
separator that is an independent set of size exactly k

Proof

Let G ′ be the graph obtained from G by adding two isolated vertices
s and t

Now, G has an independent set of size exactly k iff G ′ has an
independent s − t separator of size exactly k

But, it is W [1]-hard to check for an existence of an independent set
of size exactly k

Thus, it is W [1]-hard to check for an independent s − t separator of
size exactly k
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Other Problems

Other Problems

Multicut-Uncut Problem

Edge-Induced Vertex Cut

Bipartization Problem

Bipartite Contraction Problem

(H,C ,≤ K ) Coloring
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Take Home Message

“The small s − t separators live in the part of the graph that has
bounded treewidth”
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Thank You

Thank You !!!
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