Treewidth Reduction Lemma

Paper by Daniel Marx, Barry O'Sullivan, Igor Razgon

Presented by Jayesh Choudhari

April 3, 2017

Motivation Constrained Separation Problems

- Given a graph G and vertices s, t, find a smallest s t separator
- Using network flow techniques (for eg. Ford Fulkerson Algo) can be solved in polynomial time
- Adding constraints to the problem (for eg. stable cut problem) makes the problem NP-Hard
- In this case, we parameterize the problem with the size of the separator

Treewidth - (tw)

Def:- Tree Decomposition and Treewidth (tw)

A tree decomposition of a graph G(V, E) is a pair (T, B) in which T(I, F) is a tree and $B = \{B_i \mid i \in I\}$ is a family of subsets of V(G) such that

$$\bigcirc \bigcup_{i\in I} B_i = V$$

- g for each edge e = (u, v) ∈ E, there exists an i ∈ I such that both u and v belong to B_i; and
- If or every v ∈ V, the set of nodes {i ∈ I | v ∈ B_i} forms a connected subtree of T

width of the tree decomposition: size of largest bag in ${\mathcal B}$ minus 1

treewidth: minimum width over all the possible tree decompositions

Treewidth (*tw*)

Figure: Sequence of Separators ¹

 $^{^1{\}it Known}$ Algorithms on Graphs of Bounded Treewidth are Probably Optimal, Marx et. al.

Bramble Number - (bn)

Def:- Bramble

A *bramble* of a graph is a family of connected subgraphs of G such that any two of these subgraphs have either non-empty intersection or are joined by an edge.

Bramble Number - (bn)

Def:- Bramble

A bramble of a graph is a family of connected subgraphs of G such that any two of these subgraphs have either non-empty intersection or are joined by an edge.

Bramble Number - (bn)

Def:- Order of a bramble

The *order* of a bramble is the least number of vertices required to cover all the subgraphs in the bramble.

Def:- bramble number (bn)

The bramble number bn(G) of a graph is the largest order of a bramble of G.

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Relation between *bn* and *tw*

Theorem (SEYMOUR AND THOMAS [1993])

For every graph G, bn(G) = tw(G) + 1

Fixed Parameter Tractable (FPT)

Def:- Fixed Parameter Tractable (FPT)

A problem is said to be *fixed parameter tractable* (or *FPT*) with respect to the parameter k if instances of size n can be solved in time $f(k) \cdot n^{(\mathcal{O}(1))}$.

A problem is said to be *linear-time FPT* with parameter k if it can be solved in time $f(k) \cdot n$ for some function f.

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Courcelle's Theorem

COURCELLE [1990]

If a graph property can be described as a formula ϕ in the *Monadic* Second Order Logic of Graphs, then it can recognized in time $f_{\phi}(tw(G)) \cdot (|E(G)| + |V(G)|)$ if a given graph G has this property.

Separators

Def:- Separators

We say that a set of vertices S separates sets of vertices A and B if no component of $G \setminus S$ contains vertices from both $A \setminus S$ and $B \setminus S$.

If s and t are two different vertices of G, then an s - t separator is a set S of vertices disjoint from $\{s, t\}$ such that s and t are in different components of $G \setminus S$.

Def:- Torso

Let G be a graph and $C \subseteq V(G)$. The graph torso(G, C) has vertex set C and vertices $a, b \in C$ are connected by an edge if $(a, b) \in E(G)$ or there is a path P in G connecting a and b whose internal vertices are not in C.

Proposition

Let G be a graph. For sets $C_1 \subseteq C_2 \subseteq V(G)$, we have $torso(torso(G, C_2), C_1) = torso(G, C_1)$

Proposition

Let G be a graph. For sets $C_1 \subseteq C_2 \subseteq V(G)$, we have $torso(torso(G, C_2), C_1) = torso(G, C_1)$

Proposition

Let G be a graph. For sets $C, S \subseteq V(G)$, we have that $torso(G \setminus S, C \setminus S)$ is a subgraph of $torso(G, C) \setminus S$

Proposition

Let G be a graph. For sets $C, S \subseteq V(G)$, we have that $torso(G \setminus S, C \setminus S)$ is a subgraph of $torso(G, C) \setminus S$

Separator in Torso

Proposition

- Let $C_1 \subseteq C_2$ be two sets of vertices in G and
- let $a, b \in C_1$ be two vertices, then

A set $S \subseteq C_1$ separates a, b in $torso(G, C_1)$ if and only if S separates these vertices in the $torso(G, C_2)$

Contrapositive: For the vertices $a, b \in C_1$, $S \subseteq C_1$ does not separates these vertices in the $torso(G, C_2)$ if and only if it does not separates them in the $torso(G, C_1)$.

Separator in Torso

Proposition

- Let $C_1 \subseteq C_2$ be two sets of vertices in G and
- let $a, b \in C_1$ be two vertices, then

A set $S \subseteq C_1$ separates a, b in $torso(G, C_1)$ if and only if S separates these vertices in the $torso(G, C_2)$

Contrapositive: For the vertices $a, b \in C_1$, $S \subseteq C_1$ does not separates these vertices in the $torso(G, C_2)$ if and only if it does not separates them in the $torso(G, C_1)$.

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Collection \mathcal{X}

Lemma

Let s, t be two vertices such that minimum size of an s - t separator is $\ell > 0$. Then there is a collection $\mathcal{X} = \{X_1, X_2, \ldots, X_q\}$ of sets where $\{s\} \subseteq X_i \subseteq V(G) \setminus (\{t\} \cup N(\{t\})) \quad (1 \le i \le q)$, such that

- $X_1 \subset X_2 \subset \cdots \subset X_q$
- ② $|N(X_i)| = \ell$ for every $1 \le i \le q$, and

• every s - t separator of size l is fully contained in $\bigcup_{i=1}^{q} N(X_i)$

Furthermore, there is an $\mathcal{O}(\ell(|V| + |E|))$ time algorithm that produces sets $X_1, X_2 \setminus X_1, \ldots, X_q \setminus X_{q-1}$ corresponding to such a collection \mathcal{X} .

Collection X

Figure: Sequence of Separators²

¹Treewidth Reduction Lemma, Marx et. al.

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

$\underset{_{\mathsf{Proof}}}{\mathsf{Collection}} \ \mathcal{X}$

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

$\underset{_{\mathsf{Proof}}}{\mathsf{Collection}} \ \mathcal{X}$

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

$\underset{\text{Proof}}{\text{Collection}} \ \mathcal{X}$

Collection \mathcal{X}

• Let $Y \subseteq V(D)$ and $\Delta^+_D(Y)$ are the set of edges leaving Y

•
$$F \subset E(D)$$
 is $s_2 - t_1$ cut

- set $S \subseteq V(G)$ is an s t separator iff the corresponding set $\{\overrightarrow{v_1v_2} \mid v \in S\}$ is an $s_2 t_1$ cut
- if we can find
 - $\{s_2\} \subset Y_1 \subset Y_2 \cdots \subset Y_q \subseteq V(D) \setminus \{t_1\}$
 - such that $\Delta^+_D(Y) = \ell$ for every $1 \leq i \leq q$, and
 - and all $s_2 t_1$ cut of weight ℓ is contained in $\bigcup_{i=1}^q \Delta_D^+(Y)$

then the sets Y_i corresponds to set X_i i.e. X_i contains those vertices v for which $v_1, v_2 \in Y_i$ and $v \in N(X_i)$ iff the corresponding arc $\overrightarrow{v_1 v_2}$ is in $\Delta_D^+(Y_i)$.

Collection \mathcal{X}

• Let $Y \subseteq V(D)$ and $\Delta^+_D(Y)$ are the set of edges leaving Y

•
$$F \subset E(D)$$
 is $s_2 - t_1$ cut

- set $S \subseteq V(G)$ is an s t separator iff the corresponding set $\{\overrightarrow{v_1v_2} \mid v \in S\}$ is an $s_2 t_1$ cut
- if we can find
 - $\{s_2\} \subset Y_1 \subset Y_2 \cdots \subset Y_q \subseteq V(D) \setminus \{t_1\}$
 - such that $\Delta^+_D(Y) = \ell$ for every $1 \le i \le q$, and
 - and all $s_2 t_1$ cut of weight ℓ is contained in $\bigcup_{i=1}^q \Delta_D^+(Y)$

then the sets Y_i corresponds to set X_i i.e. X_i contains those vertices v for which $v_1, v_2 \in Y_i$ and $v \in N(X_i)$ iff the corresponding arc $\overrightarrow{v_1 v_2}$ is in $\Delta_D^+(Y_i)$.
Collection \mathcal{X}

- Run ℓ rounds of the Ford-Fulkerson algo on network D to get maximum $s_2 t_1$ flow
- Let D' be the residual graph
- Let C₁, C₂,... C_q be a topological order of the strongly connected components of D' (i.e. i < j whenever there is a path from C_i to C_j)
- There is no $s_2
 ightarrow t_1$ path, but there is an $t_1
 ightarrow s_2$ path
- If t_1 is in C_x and s_2 is in C_y , then x < y
- For every $x < i \le y$, let $Y_i := \bigcup_{j=i}^q C_j$

Collection \mathcal{X}

- Run ℓ rounds of the Ford-Fulkerson algo on network D to get maximum $s_2 t_1$ flow
- Let D' be the residual graph
- Let C₁, C₂,... C_q be a topological order of the strongly connected components of D' (i.e. i < j whenever there is a path from C_i to C_j)
- There is no $s_2
 ightarrow t_1$ path, but there is an $t_1
 ightarrow s_2$ path
- If t_1 is in C_x and s_2 is in C_y , then x < y
- For every $x < i \le y$, let $Y_i := \bigcup_{j=i}^q C_j$

Collection \mathcal{X}

Claim

Capacity of $\Delta_D^+(Y_i) = \ell$

Proof

- No arc leaves Y_i in the residual graph D' (by definition of Y_i)
- i.e. Every edge leaving Y_i is D is saturated and no more flow enters Y_i
- As $s_2 \in C_y \subseteq Y_i$ and $t_1 \in C_x \subseteq V(G) \setminus Y_i$, this is only possible if $\Delta_D^+(Y_i) = \ell$

What remains to show is that every arc contained in $s_2 \rightarrow t_1$ cut of weight ℓ is covered by one of the $\Delta_D^+(Y_i)'s$

$\underset{\text{Proof}}{\mathsf{Collection}} \, \mathcal{X}$

Claim

Every arc contained in $s_2 \to t_1$ cut of weight ℓ is covered by one of the $\Delta^+_D(Y_i)'s$

- Let F be an $s_2 \to t_1$ cut of weight ℓ (i.e. $\Delta^+_D(Y_i) = \ell$)
- Let $Y = \{v \mid s_2 \rightarrow v \text{ path in } G[D \setminus F]\}$
- Consider an arc $\overrightarrow{ab} \in F$ (\overrightarrow{ab} is saturated as F is minimum cut)
- Hence, there is an \overrightarrow{ba} in D' (residual graph)
- Claim is arc \overrightarrow{ba} does not appear in any cycle of D'
- If not, then there is an arc \overrightarrow{cd} that leaving Y in D

$\underset{\tiny{\mathsf{Proof}}}{\mathsf{Collection}} \, \mathcal{X}$

- An arc like \overrightarrow{cd} cannot exist, as every arc leaving Y in D is saturated and no flow enters Y
- Thus *a* and *b* are in different strongly connected components *C*_{*i*_a} and *C*_{*i*_b} for some *i*_b < *i*_a
- As there is a flow from s_2 to a, there is an $a \to s_2$ path in D', and hence $i_a \leq y$
- As there is a flow from b to t_1 , there is an $t_1 \rightarrow b$ path in D', and hence $i_b \ge x$
- Thus we have $x \le i_b < i_a \le y$
- Y_{i_a} is well defined and, \overrightarrow{ab} of D is contained in $\Delta_D^+(Y_{i_a})$

Bounding bn

Lemma

Let G be a graph and C_1, C_2, \ldots, C_r be the subsets of V(G) and let $C := \bigcup_{i=1}^r C_i$. Then we have $bn(torso(G, C)) \leq \sum_{i=1}^r bn(torso(G, C_i))$

- Let \mathcal{B} is the bramble of G having order bn(G).
- For every $1 \le i \le r$, let $\mathcal{B}_i = \{B \bigcap C_i \mid B \in \mathcal{B}, B \cap C_i \neq \phi\}$

Bounding *bn*

Claim

 \mathcal{B}_i is a bramble of $torso(G, C_i)$

That is, need to show that $B \cap C_i \in B_i$ is connected and sets in B_i pairwise touch

Proof

Part-I: To show $B \cap C_i \in B_i$ is connected

- Consider two vertices $x, y \in B \bigcap C_i$
- $B \in \mathcal{B}$ is connected (by definition)
- There exists a path between x, y in B
- Thus, the nodes $x, y \in B \bigcap C_i$ are connected in $torso(G, C_i)$

Bounding bn

Proof (Cont...)

Part-II: To show sets in \mathcal{B}_i 's pairwise touch

- B_1 and B_2 touch in G (as per the definition of bramble)
- Therefore, there are vertices $x \in B_1$ and $y \in B_2$, such that either x = y or x and y are adjacent.
- Case-1: If those vertices $x, y \in C_i$, then it is clear that $B_1 \cap C_i$ and $B_2 \cap C_i$ touch each other
- Case-2: If those vertices x, y ∉ C_i, then x must be connected to some u ∈ B₁ ∩ C_i and y must be connected to some v ∈ B₂ ∩ C_i
- This leads to addition of an edge (u, v) for $u \in B_1 \cap C_i$ and $v \in B_2 \cap C_i$ in *torso* (G, C_i) .

Bounding bn and tw

Lemma

Let $C' \subseteq V(G)$ be a set of vertices and let R_1, R_2, \ldots, R_r be the components of $G \setminus C'$. For every $1 \leq i \leq r$, let $C'_i \subseteq R_i$ be the subsets and let $C'' := C' \bigcup_{i=1}^r C'_i$. Then we have

$$\textit{tw}(\textit{torso}(\textit{G},\textit{C}^{''})) \leq \textit{tw}(\textit{torso}(\textit{G},\textit{C}')) + \max_{i=1}^{r} \textit{tw}(\textit{torso}(\textit{G}[\textit{R}_i],\textit{C}_i^{'})) + 1$$

$$bn(torso(G, C^{''})) \leq bn(torso(G, C')) + \max_{i=1}^{r} bn(torso(G[R_i], C_i^{'}))$$

Bounding *bn* and *tw*

- Let T be the tree decomposition of torso(G, C') having width at most w₁ and let T_i be the tree decomposition of torso(G[R_i], C_i') having width at most w₂.
- Let $N_i \subseteq C'$ be the $N(R_i)$ in G
- N_i induces a clique in torso(G, C'), we have |N_i| ≤ w₁ + 1 and there is a bag B_i of T containing N_i
- Modify T_i by including N_i to every bag in T_i and join T and T_i by connecting an arbitrary bag of T_i to B_i . Do this for every $1 \le i \le r$
- Thus the tree decomposition now has width at most $w_1 + w_2 + 1$
- Claim: This is tree decomposition for torso(G, C'')

Bounding *bn* and *tw*

Consider two vertices $x, y \in C''$ that are adjacent in torso(G, C'')

Proof (Cont...)

- Case-1: if x, y ∈ C', then they are adjacent in torso(G, C') as well and hence they appear in the bag of T
- Case-2: if x, y ∈ C'_i, then all the vertices of P are in R_i. Thus, they are adjacent in torso(G[R_i], C'_i) and hence they appear in the bag of T_i
- Case-3: if x ∈ C' and y ∈ C'_i then x ∈ N_i and every bag of T_i containing y was extended with N_i

Bounding *tw*

COROLLARY

For every graph G, set $C, X \subseteq V(G)$, we have

$tw(torso(G, C \cup X)) \leq tw(torso(G, C)) + |X|$

Def: excess of separator

If the minimum size of the separator is $\ell,$ then the excess of an s-t separator |S| is $e=|S|-\ell$

"Our aim is to have s - t separators of size at most k, which is equivalent to getting all the s - t separators of excess at most e"

Lemma

Let s, t be two vertices of graph G and let ℓ be the size of an minimum s - t separator. For some e > 0, let C be the union of all minimal s - t separators having excess at most e (i.e. having size at most $k = \ell + e$). Then there is an $f(\ell, e) \cdot (|E(G)| + |V(G)|)$ time algorithm that returns a set $C' \supseteq C$ disjoint from $\{s, t\}$ such that $bn(torso(G, C')) \leq g(\ell, e)$, for some functions f and g depending only on ℓ and e.

Recall the collection ${\mathcal X}$

Figure: Sequence of Separators³

¹Treewidth Reduction Lemma, Marx et. al.

- $X_0 = \phi, X_{q+1} = V(G) \setminus \{t\}$
- $S_i = N(X_i)$ for $1 \le i \le q$
- $S_0: \{s\}, S_{q+1} = \{t\}$
- For $1 \le i \le q+1$, let $L_i = X_i \setminus (X_{i-1} \bigcup S_{i-1}) (L'_i s$ are pairwise disjoint)
- For 1 ≤ i ≤ q + 1 and two disjoint non-empty subsets A, B of S_i ∪ S_{i-1}, define G_{i,A,B} to be the graph obtained from G[L_i ∪ A ∪ B] by contracting the set A to vertex a and B to vertex b.

Motivation

Constructing a set of minimal s - t separators

Claim

If a vertex $v \in L_i$ is in *C*, then there are disjoint non-empty subsets *A*, *B* of $S_i \cup S_{i-1}$ such that *v* is part of a minimal a - b separator K_2 in $G_{i,A,B}$ of size at most *k* (recall $k = \ell + e$) and excess at most e - 1.

Claim

 K_2 is an a - b separator

- $K_1 := K \setminus L_i, K_2 := K \cap L_i$
- Partition $(S_{i-1} \cup S_i) \setminus K$ into set A that is reachable from s and set B not reachable from s in $G \setminus K$
- If not then there is a path P' connecting a and b, which is disjoint from K_2 and also K_1
- Path P_1 in G from s to a and P_2 in G from b to t and combine (P_1, P', P_2) .
- Which is contradiction for K being an separator

Claim

K_2 is an minimal a - b separator

- Suppose not, then ∃x ∈ K₂ such that K₂ \ {x} is still an a − b separator
- K is an minimal separator (given), therefore, $\exists a \ s t$ path P in $G \setminus K \setminus \{x\}$ that passes through $x \in K_2$
- This path P also intersects a and b. Which implies that there is a subpath P' in P that is disjoint from K_2 and thus K_2 is not an a b separator

Claim

 K_2 has excess at most e-1 in $G_{i,A,B}$ which is formed from $G[L_i \cup A \cup B]$

- Let K'_2 be an minimum a b separator in $G_{i,A,B}$
- Now $K_1 \cup K'_2$ is a separator in G (if not, then as similar to previous claim K'_2 is not a b separator)
- Also, K₁ ∪ K₂' contains some vertex from L_i, thus, it is not an minimum separator in G (as all minimum separators are in ∪^q_{i=1}S_i)
- Therefore, $|K_1 \cup K_2'| > \ell$

•
$$|\mathcal{K}_2| - |\mathcal{K}_2^{'}| = (|\mathcal{K}_1| + |\mathcal{K}_2) - (|\mathcal{K}_1| + |\mathcal{K}_2^{'}|) < k - \ell$$
 i.e. at most $e-1$

Claim

 K_2 has excess at most e-1 in $G_{i,A,B}$ which is formed from $G[L_i \cup A \cup B]$

- Let K_2' be an minimum a b separator in $G_{i,A,B}$
- Now $K_1 \cup K'_2$ is a separator in G (if not, then as similar to previous claim K'_2 is not a b separator)
- Also, K₁ ∪ K'₂ contains some vertex from L_i, thus, it is not an minimum separator in G (as all minimum separators are in U^q_{i=1} S_i)
- Therefore, $|K_1 \cup K_2'| > \ell$

•
$$|\mathcal{K}_2| - |\mathcal{K}_2^{'}| = (|\mathcal{K}_1| + |\mathcal{K}_2) - (|\mathcal{K}_1| + |\mathcal{K}_2^{'}|) < k - \ell$$
 i.e. at most $e-1$

- Let $C_0 = \bigcup_{i=1}^q S_i$ (s, t does not belong to C_0)
- For e = 0, return $C' = C_0$
- Also, $tw(torso(G, C_0)) \le 2\ell 1$ i.e. bags $S_1 \bigcup S_2, S_2 \bigcup S_3, \dots, S_{q-1} \bigcup S_q$ define the tree decomposition of width at most $2\ell - 1$ (base case)

Assume now that e > 0

- For every non-empty subsets A, B of $S_{i-1} \bigcup S_i$, the induction assumption implies that there exists a set $C'_{i,A,B} \subseteq L_i$ such that $bn(torso(G_{i,A,B}, C'_{i,A,B})) \leq g(\ell, e-1)$ and $C'_{i,A,B}$ contains every inclusion-wise minimal a - b separator of size at most k and excess at most e - 1 in $G_{i,A,B}$
- Let C' be the union of C_0 and all the sets $C'_{i,A,B}$
- Any vertex v participating in a minimal separator of size at most k belongs to C': C_0 adds the nodes for the separators of size ℓ and if the size of the separator is greater than ℓ then by the previous claim v is contained in some $C'_{i,A,B}$

Claim

bn for torso(G, C') is bounded by the function $g(\ell, e)$

- Each component of $G \setminus C_0$ is fully contained in some L_i
- Let C_i' be the union of the at most 3^{2ℓ} sets C_{i,A,B}, for non-empty subsets A, B of S_{i-1} ∪ S_i
- Therefore, $bn(torso(G[L_i], C_i')) \leq 3^{2\ell} \cdot g(\ell, e-1)$
- That is we have same bound on the bn(torso(G[R], C' ∩ R)) for every component R of G \ C₀
- Therefore, bn for $torso(G, C') \le 2\ell + 3^{2\ell} \cdot g(\ell, e-1)$ $(tw(torso(G, C_0)) \le 2\ell - 1)$

Claim

The set C' can be constructed in time $f(\ell, e) \cdot (|E(G)| + |V(G)|)$ for an appropriate function $f(\ell, e)$

Proof

We will prove this by induction on *e*. For e = 0 we have already shown the construction of C_0 in time $\mathcal{O}(\ell \cdot (|E(G)| + |V(G)|))$ (base case) Assume e > 0.

- For each L_i explore all the possible non-empty subsets A, B of $S_{i-1} \cup S_i$
- Let $m_i = |E(G[L_i])|$, which implies $|E(G_{i,A,B})| \le m_i + 2|L_i|$ (at most $|L_i|$ edges from a and b each)
- Check if size of minimum a b separator is of size at most k, which can be done in $O(k(m_i + 2|L_i|))$ time (using k rounds of Ford-Fulkerson)
- If yes, compute $C'_{i,A,B}$ recursively

Proof

- Number of steps required for layer *i* is O(3^{2ℓ} · k(m_i + 2|L_i|)) (not considering the recursion calls)
- By induction assumption each of the at most 3^{2ℓ} recursive calls takes at most f(ℓ, e − 1) · (m_i + 2|L_i|) steps

Therefore, the overall running time is:

$$\mathcal{O}(k(|E(G)|+|V(G)|)) + \sum_{i=1}^{q+1} \mathcal{O}(3^{2\ell} \cdot k(m_i+2|L_i|)) + 3^{2\ell} f(\ell, e-1) \cdot (m_i+2|L_i|)$$

 $\leq \mathcal{O}(k(|E(G)|+|V(G)|)) + \mathcal{O}(3^{2\ell} \cdot k(|E(G)|+2|V(G)|)) + 3^{2\ell}f(\ell, e-1) \cdot (|E(G)|+2|V(G)|) + 3^{2\ell}f(\ell, e-1) \cdot (|E$

 $\leq f(\ell, e) \cdot (|E(G)| + 2|V(G)|)$

Treewidth Reduction Theorem (TRT)

Theorem (Treewidth Reduction Theorem)

Let G be a graph, $T \subseteq V(G)$, and let k be an integer. Let C be the set of all the vertices of G participating in a minimal s - t separator of size at most k for some $s, t \in T$, there is a linear-time algorithm that computes a graph G^* having the following properties:

$$C \bigcup T \subseteq V(G^*)$$

- For every s, t ∈ T, a set K ⊆ V(G*) with |K| ≤ k is a minimal s − t separator of G* iff K ⊆ C ∪ T and K is a minimal s − t separator in G
- **(3)** The treewidth of G^* is at most h(k, |T|) for some function h
- $G^*[C \bigcup T]$ is isomorphic to $G[C \bigcup T]$. i.e. For any $K \subseteq C$, $G^*[K]$ is isomorphic to G[K]

Treewidth Reduction Theorem (TRT)

- For every $s, t \in T$ that can be separated by the removal of at most k vertices, we have shown how to compute the sets $C'_{s,t}$ containing all the minimal s t separators of size at most k
- Let $C' = \bigcup_{i=1}^{\binom{|T|}{2}} C'_{s,t}$, then tw(torso(G, C')) is bounded by the function of k and |T|
- Also, $tw(G^*) = tw(torso(G, C' \cup T))$ is bounded as well
- But, two vertices of C' not adjacent in G may be adjacent in $G' = torso(G, C' \cup T)$
- Fix: for each edge $(u, v) \in E(G') \setminus E(G)$ introduce k + 1 new vertices $w_1, w_2, \ldots, w_{k+1}$ and replace edge (u, v) with the set of edges $\{(u, w_1), \ldots, (u, w_{k+1}), (w_1, v) \ldots (w_{k+1}, v)\}$.
- Let G^{*} be the resulting graph

Motivation

Hereditary Graph Classes

Def:- Hereditary Graph Classes

Let \mathcal{G} be a class of graphs. Then \mathcal{G} is said to be hereditary if for every $G \in \mathcal{G}$ and $X \subseteq V(G)$, we have $G[X] \in \mathcal{G}$

"Thus, if we can construct a graph G^* using the TRT for T = s, t, then G has an s - t separator of size at most k that induces a member of G iff G^* has such a separator"

Hereditary Graph Classes

Def:- Hereditary Graph Classes

Let \mathcal{G} be a class of graphs. Then \mathcal{G} is said to be hereditary if for every $G \in \mathcal{G}$ and $X \subseteq V(G)$, we have $G[X] \in \mathcal{G}$

"Thus, if we can construct a graph G^* using the TRT for T = s, t, then G has an s - t separator of size at most k that induces a member of G iff G^* has such a separator" Motivation

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

G - MINCUT Problem

G - MINCUT Problem

Given a graph G, vertices s and t, and a parameter k, find a s - t separator C of size at most k such that $G[C] \in \mathcal{G}$.

Theorem

Assume that ${\cal G}$ is decidable and hereditary. Then, the ${\cal G}-MINCUT$ problem is FPT

Motivation

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

G - MINCUT Problem

$\mathcal{G} - MINCUT$ Problem

Given a graph G, vertices s and t, and a parameter k, find a s - t separator C of size at most k such that $G[C] \in \mathcal{G}$.

Theorem

Assume that ${\cal G}$ is decidable and hereditary. Then, the ${\cal G}-MINCUT$ problem is FPT

G - MINCUT Problem

- Let G^* be the graph that is constructed using the TRT for $S = \{s, t\}$ computed in *FPT* time
- Claim: (G, s, t, k) is a 'YES' instance of G MINCUT problem iff (G*, s, t, k) is a 'YES' instance
- Let K be an minimal s t separator in G such that $|K| \le k$ and $G[K] \in \mathcal{G}$
- Using 2^{nd} and 4^{th} properties of TRT for G^* , K separates s and t in G^* and $G^*[K] \in \mathcal{G}$.
- The other direction can be proved in similar way
- Thus we have established an *FPT*-time reduction from an instance of $\mathcal{G} MINCUT$ problem to another instance of this problem where the treewidth is bounded by the function of parameter k.
- Now, the treewidth reduced instance can be solved using Courcelle's theorem.

Motivation

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

G - MINCUT Problem

Corollary

MINIMUM STABLE s - t CUT is linear-time FPT

"But some of these problems become hard if the size of the separator is required to be exactly k" Motivation

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

G - MINCUT Problem

Corollary

MINIMUM STABLE s - t CUT is linear-time FPT

"But some of these problems become hard if the size of the separator is required to be exactly k"
G - MINCUT Problem

Theorem

It is W[1]-hard (parameterized by k) to decide if G has an s - t separator that is an independent set of size exactly k

Proof

- Let G' be the graph obtained from G by adding two isolated vertices s and t
- Now, G has an independent set of size exactly k iff G' has an independent s t separator of size exactly k
- But, it is W[1]-hard to check for an existence of an independent set of size exactly k
- Thus, it is W[1]-hard to check for an independent s t separator of size exactly k

Other Problems

Other Problems

- MULTICUT-UNCUT Problem
- Edge-Induced Vertex Cut
- BIPARTIZATION Problem
- BIPARTITE CONTRACTION Problem
- $(H, C, \leq K)$ Coloring

Motivation

Basic Definitions

Tw bound on Minimal s-t separators

Constrained Separation Problems

Take Home Message

"The small s – t separators live in the part of the graph that has bounded treewidth"

Thank You !!!