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Overview
Part-I Modeling Perspective

® Discovering topical interactions in text-based cascades using Hidden Markov Hawkes Processes
(HMHP).
Choudhari, ., Dasgupta, A., Bhattacharya, 1., & Bedathur, S. (2018, November). In 2018 IEEE
International Conference on Data Mining (ICDM)

® Unified Marked Temporal Point Process. (Dual Network Hawkes Process (DNHP))

Choudhari, |., Dasgupta, A., Bhattacharya, 1., & Bedathur, S. In Temporal Point Process
Workshop — NeurIPS 2019.

Part-II Algorithmic Perspective

® Saving Critical Nodes with Firefighters is FPT. Choudhari, J., Dasqupta, A., Misra, N., &
Ramanujan, M. S. (2017). In 44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017).
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Part-I: Modeling Peispective.
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What is a Model?

A model is an imaginary procedure that generates observed data e, e., ...

The procedure has a parameter(s) ©, and we use data to learn it

“inference”

Why should we learn the parameter(s) 6?

Lets us make predictions and answer questions about data at an
abstract, high level
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Example

From the data directly, one can answer simple questions:
“How many heads/tails?”
“Was there a heads before a tails?”

“What was the longest string of heads?”
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Example

How about using a model?:

Every coin toss has a probability 6 of being heads; estimate O = 4/(4+2) =%
Now we can make predictions and ask abstract questions:
“How likely am I to see heads next?”

“Is this coin fair?”
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Bayesian Models

Aydol parameter (unknown)

User-topic preference

Topic-topic vector

Dirichlet hyperparameter

Topic assignment

data 1s observed/fixed

Observed word
Topic-word distribution @

Dirichlet hyperparameter
for topic-word distributi

ord distribution

Bayesian models help in quantifying uncertainty in the unknown parameter(s) @

Learn distribution over the values that the parameter(s) can take

probably not very certain that 6 = %5
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Bayesian Models - Applications

suggesting predicting driving summarizing analyzing
movies crop yields autonomously topics medical imagery
— y
Che
New JJork

Cimes

making smart discovering exploring the reducing
trades protein structure universe traffic
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Data: Network + Time Series of Tweets
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What is there to do?
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Topical Interactions
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Research Gaps + Gaps Filled

User  Time- Topic Topic

Niw  series LOPIC Ny excitations Past Work (+ Thesis)
X X Du et al. ['15] (Dirichlet-Hawkes)
Simma-Jordan ['10],
x x x Gomez et al. ['11] (NetInf, NetRate)

Yang et al. ['13] (MMHP),
Linderman et al. ['14] (NetHawkes)

) ¢ X Heetal. ['15] (HTM)

X Choudhari et al. ['18] (HMHP)

Choudhari et al. ['19] (DNHP)
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Mixture of Conversations
g Syria Strike Puts U.S. ﬁ

Relationship With Russia at Risk H g}'u:]ltlp to ;:Fr?[‘; N/;SA’ and Set o o
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Cascades: Separate Conversations

wldl % Syria Strike Puts U.S. twldd Trum_p Signs Bill Securing NASA
Relationship With Russia at Risk % Funding, Plans to Reach Mars

L \
p ar(thdZ_) = twld] twld5 H Trump to ‘Free NASA’ and Set Sights
ficllrsfsl:ezngééagi\é\ézrgyU-s- . —  on Further Space Exploration
Attacking Syria’ par (twld>5) = twld4
- twld6
‘@i Russia denies bombing .«] The Most Vulnerable NASA
twld3 | 277 U.S.-backed Syrian rebels Missions Under Trump
L - L—
par (twld3) = twld1 par(twldé) = twld5

Just separate these conversations!!!

User Temporal Dynamics Network Strengths (user-user influence)

Preferred topics of each user Topics in the tweets/documents
Topical Interactions
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Why Topical Interactions in HMHP?

Parent-Child tweet pair

Gellman:My definition of whistleblowing:are you
shedding light on crucial decision that society
should be making for itself. #snowden

. - L
—M Why Topical

Interactions?

Gellman we are living inside a one way mirror,they Topic-1: idol, bbcan2, havesandhavenots, thegamebet
& big corporations know more and more about us Topic-2: tvtag, houseofcards, agentsofshield, arrow,

Hashtags from top-3 transitioned topics

agentsofshield, arrow, tvtag, supernatural, chicagoland

and we know less about them #sxsw Topic-3: soundcloud, hiphop, mastermind, nowplaying

Hashtags from a pair of parent-child topics

steelers,browns,seahawks, fantasyfootball, nfl

e

mlb, orioles, rays, usmnt, redsox
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Generative Model : HMHP
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HMHP (HTM) Generative model: Overview

1. Generate time-stamps of events for each user (Hawkes Process)

2. For each event, assign topic (dependent on the topic of the influencer event i.e.
parent event)

3. For each event, generate words
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Self-exciting Point Process (Hawkes Process)
Time-stamps are characterized by an intensity function:

At)dt := Pr (event in [t + dt) | ¥,-)

Time Kernel

Multivariate Hawkes Process \
[#H,— |
Mo(t) = o) + Y heyw(t=tn)  he,w(t —tn) = We,uf (AD)
o |
Base Intensity Impulse Response User-User Influence
Explain
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Multivariate Hawkes Process (MHP): (umHP, HTM, NetHawkes)
[H |

Ao(t) = () + D Pepu(t —tn)  heo(t — ) = Weuf (A1)
n=1

] (t1,u,-1) 4 (ty,u,3) = ———— == ———— -

For each event,
topics are sampled

later independent of
the time-stamps
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What HTM [He. et al., 2015] does?
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Missing Topical Interactions in HTM [He. et al., 2015]

“If an event 1is triggered by Parent-Child tweet pair
another event its document [#MASalert] Statement By Our Group CEO,
.. ! Ahmad Jauhari Yahya on MH370 Incident.

should be similar to the document Released at 9.05am/g Mar 2014
of the triggering event. This L
SMgg@StS that the Content Of the Missing #MalaysiaAirlines flight carrying 227

4 ) passengers (including 2 infants) of 13 nationalities
user's post, influenced by the passengers (including
friend’s previous post should have
similar content to her friend’s Repeating patterns in the topics of the
p ost.” ~HTM [He. et al., 2015] parent and chél{u}l\;ze;ts extracted by

Note: These parent-child pairs are neither retweets nor does Twitter provide
any signal to know any relation about these pairs
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Missing Topical Interactions in HTM [He. et al., 2015]

Generation of Topic of child event in HTM

. Parent-Child tweet pair
If event e is not spontaneous, then
. . [#MASalert] Statement By Our Group CEO,
TOplC(e)~N0Tmal(T0plC(paT(e)), o> I) Ahmad Jauhari Yahya on MH370 Incident.
/ Released at 9.05am/8 Mar 2014
V/S —
Generation of Topic of child event in HMHP
If event e is not spontaneous then Missing #MalaysiaAirlines flight carrying 227
) i ’ passengers (including 2 infants) of 13 nationalities
Topic(e) ~ {(Topic(par(e))) and 12 crew members.

where, { is Topical Interaction Distribution

How HMHP does this?
® Coupling of Network MHP and the Markov Chain over topics.

® Coupled inference: Collapsed Gibbs sampling
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l .
t,= time, c,=user, z,= parent |

Generative Model = time, c~user, z, !
1) Generate (te, Ce ze) T all events according Multivariate

Hawkes Process_% _:Te;qp?)rzl T)y_ncz_m7cs._ 59’_1\7615;00_7’](_ .:
2) For each topic k: sample ¢, ~ Diryy(a)| ([Werenceusimg MAP -
For each topic k: sample Dirk(B) s ==——===m=== === :
3) F h pd . pl Tk ND K(’B) | Topic-word, Topic-Topic, and |
) For each node v: sample d)fu ~ ITK (7) User-Topic distributions resp. |
5) For each event e at node c. = v: - bt ~
a) 1) if z. = 0 (level 0 event): | Cascade” “reconsiriiction  and!
draw a topiC 7e ~ Dzscreteg(qbq)) — Topical  Interactions  coupling,
11) else: Topic Topical Interaction Matrix 'M_Hl_) u_nciT_Op_zccil ZL/IES __

draw a topic 7. ~ Discretex (T .. ) L

Topzc
) Model

b) Sample document length N. ~ Poisson(\)
¢) Forw =1...Ne: draw word e, ~ Discretew(¢,
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Inference : HMHP
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Likelihood MTPP

Prob. of no actions at t€[0, 7]\ {¢; }

Prob. of an action at ¢; - % ~
—N— T
P = | T o) mem) | ] ew /0 M (7)dr

Prob. of mark 7; veV

Note: The timestamps t; and the marks(topics) n; are modeled independently.
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Gibbs Sampling

e Suppose p(x,y) is a p.d.f. that is difficult to sample from directly.

e But, can sample from the conditional distributions p(x|y) and p(ylx)

Gibbs Sampling
® Set x and y to some 1nitial values - say (X,, ¥,)
@ TFor 1 =1 to M(#iterations):

o Sample x. ~ p(x|y;_;)

o Sample y, ~ p(ylx;)
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Parameters to infer;: HMHP

e Topic for each event
e Parent for each event

e User-User influence (for all pairs of users)

o TopicTFopietrteraction? (Integrates out due to Collapsed Gibbs Sampling)
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Cascade Inference (Parent Assignment)

Interaction between
the users of the par-
child events

Time
Stamps

Pr(par(e) =f | Topics, W, {tif) o<

| -
User-User . . ' .
Influence Topical interaction Exponential
between decay
parent-child events (Time kernel)

Models and Algorithms for Information Diffusion




Topic Inference

Topical interaction
at the parent child
structure

content of
the event e

The Most
Pr (topic (€) = k| {ZyZp), (Wi}, Topics\{topic (e)}) o
NASA Missions
Under Trump
Content of
. . event e
parent topic assignment _
assignment of all of all other Ll
events events

Note: Topical Interactions are inferred using the sampled topics and the parent-child structure
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Results : HMHP
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Datasets

Twitter (Real Data):

- 500K tweets corresponding to top 5K hashtags from the most prolific 1M users generated
In a contiguous part of March 2014

Semi-Synthetic:

- Retain the underlying set of nodes and the follower graph from a sample of Twitter Data.
- Estimate the parameters required for our model from the data.

- Generate 5 different samples of 1M events using HMHP model.

HMHP performs better on Semi-Synthetic dataset
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HMHP Anecdotal Results : Real Dataset

Parent-Child tweet pair

Gellman:My definition of whistleblowing:are you
shedding light on crucial decision that society
should be making for itself. #snowden

e R

Gellman we are living inside a one way mirror,they
& big corporations know more and more about us

and we know less about them #sxsw

Hashtags from top-3 transitioned topics

agentsofshield, arrow, tvtag, supernatural, chicagoland

—

Topic-1: idol, bbcan2, havesandhavenots, thegamebet
Topic-2: tvtag, houseofcards, agentsofshield, arrow,
Topic-3: soundcloud, hiphop, mastermind, nowplaying

Hashtags from a pair of parent-child topics

steelers,browns,seahawks, fantasyfootball, nfl

e

mlb, orioles, rays, usmnt, redsox
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Generative Model : DNHP
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What is missing in HMHP? (as well as in HTM, NHWKS)
|H,— |
)\’U (t) — Hﬂu(t) + Z hcn,v (t T tn) hcn,v(t - tn) — VVCnvf(At)
n=1

If user v likes user c,, it would try generating a time-stamp

Note that this does not take the into account the topic
of the event generated by c,
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Time-Topic relation evidence: [ DirHawkes Du et al. '15]
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Multivariate Hawkes Process (MHP): (umHP, HTM, NetHawkes)

[H,— |
Ao(t) = po(t) + D he, ot —tn) he »(t —ty) = W ,f (At)
n=1
l(tlrur_l) 4 (t3rur3)
SV Pt

; I E E (t3,V,2)i ‘t4/v/4) (t61v14)

: § 3 Sa Sc¢ For each event,

: topics are sampled

PR ey - e later independent of

i § ; - the time-stamps

| : 2 (ty,w,1) 5 5p (ts,w,4)
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Marked Multivariate Hawkes Process: (onHP)

H |
A(t) = () + Y bt — tn) he,v(t —tn) = Wy Ty f(AL)
\(t,, c,, k, z,) = (time, user, topic, parent) |
l(tllurkl_l) 4 __________________
(ts,u,k,3)
@ T | ----- > - > I
r (t3,v,1,2) (t,,v,1,4) (to, v,1,4)
i § a 5¢C
@ SR S S | S For each event, topic
§ ; f | : comes along with the
. 5 (b bm 1) | 5t (ts,w,m,4) event generation

time.
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What we add to HMHP - DNHP?
[#H |
)\’U (t) — H“U(t) + Z hcn,fu (t T tn) hcn,v(t T tn) — VVCnvf(At)
n=1
If user v likes user c,, it would try generating a time-stamp

Note that this does not take the into account the topic

HMHP of the event generated by c,
DNHP [, |
Av(t) = pe(t) + Z he, (T — hcn,v(t — tyn) = Wy Ty f (AL)

If user v likes user c,, and also the topic of event by c,,

then it would try generating a time-stamp
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HMHP v/s DNHP

HMHP

Hawkes process for each user node

/

DNHP

Hawkes process for each user-topic pair node

Topics are still latent!
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HMHP v/s DNHP

HMHP

0. 01 0.27 \
DAL iy,

A

@@ _—

0.03 0.62

T




DNHP Likelihood Form

Prob. of no actions at t&[0,7]\{#; }

Prob. of an action at ¢; with mark 7; - ~
P T
P(Hr) = H Ay, (t5) H exp / Ny, (T)dT
e;€Hr vey 0

Vi = (’Ufz:: ’fh')

Prob. of no actions at t€[0, 7]\ {t; }

Prob. of an action at ¢; 7 ~

A T
Recall:  P(Hr):=| ]  Ault) m* () | 11 eXp< MT)C”)
veV 0

Prob. of mark 7;
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HMHP (HTM,NetHawkes) v/s DNHP

HMHP (HTM, NetHawkes) | DNHP
(each user node) Intensity Function (a user-topic pair)
v = ()
|Ht—| @ |Ht—|
/\’U(t) - /"”U(t) + Z hcn,v(t - tn) )\v(t) ~ /,Lv(t) T Z hcmv(t B tn)
n=1 n=1
Base Rate

@ V=

Impulse Response

O—©

hu,U(At) = Wu,vf(At) hu,v(At) = Wu,ka,krf(At)

fo(t) = po(t) fo (t) = poo () pe (2)
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HMHP (HTM,NetHawkes) v/s DNHP

HMHP (HTM, NetHawkes)

DNHP

Influence Inference

Wu,'u ~ Gamma (Nu,v + aq, Nu + 61)

Note: Topic-Topic interaction is integrated out in
HMHP because of conjugacy

Coupled/interacting parameters

Wu,v ~ Gamma (Nu,v + agq, Z (Nu,k ZTk,k’) + 181)
kl

k

T ~ Gamma (Nk,;cf + o, Z (Nu!k Z Wu,v) + ﬁl)

u

Base Rate Inference

Nl()spon)
Ho = ="

Note: There is no base rate associated with
the topics

N(spon) N}gspon)

v
= /_Lk =
TZkeK Hk TZ?JEV Ho

[y
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Results : DNHP
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Datasets

Twitter (Real Data):

- Tweets from 151 US Congress Members comrpising of 360K tweets -- gathered using
Twitter API in July 2018.

Semi-Synthetic:

- Retain the underlying set of nodes and the follower graph from Twitter Data.
- Estimate the parameters required for our model from the data.

- Generate 5 different samples of 360K events using DNHP model.

DNHP performs better on Semi-Synthetic dataset
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Baselines

e HWK + DIAG:
o  Simplified HMHP with diagonal topical interactions

e HWK x LDA:
o Network Hawkes model for cascade structure and time-stamps

o LDA mixture model for the textual content

e HMHP

e DNHP
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DNHP Generalization Performance: Real Dataset

Higher the better ]

#Topics = 25
TRAIN (TEST) | DNHP | HMHP HWK+DIAG | HWKXLDA
114K (70K) -80.51 -95.71 -100.21 -96.53
177K (100K) -78.09 | -86.66 -91.06 -87.34
240K (130K) -76.57 |-80.14 -83.96 -80.18
114K (70K) -80.51 -95.71 -102.16 -97.46
177K (100K) -78.09 |-86.66 -92.99 -88.16
240K (130K) -76.57 |-80.14 -85.64 -80.88
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DNHP Generalization Performance: Real Dataset

AVG. LL (TIMEB) Higher the better

#TOPICS = 25 #TOPICS = 100

TRAIN (TEST)|DNHP |NHWKS |DNHP |NHWKS

114K (70K) -8.74 -24.46 -8.04 -24.46 67.13%
177K (100K) | -7.45 -16.32 -7.09 -16.32 56.55%
240K (130K) | -6.56 -10.27 -6.37 -10.27 37.97%

The gap between DNHP and HMHP is larger for smaller dataset size (the training size).

Parameters are learned efficiently using flow of evidence between parameters.
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Conclusion

e HMHP & DNHP, account for topical interactions, user-user influence, user-topic patterns.

® [n DNHP the rate of generation of events is dependent not only on the users but also on the
topic or mark associated with the event.

® [n DNHP, topical interactions & user-user influence are coupled, and joint estimation of these
parameters enables flow of evidence across the parameters.

® [n both HMHP & DNHP, incorporating topical interactions and the collective inference of
parameters leads to more accurate estimation latent parameters, also, fits the real Twitter
conversations better (in terms of test likelihood) as compared to other state-of-the-art models.
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Part-II: Algorithmic Perspective

Saving a Critical Set with Firefighters
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The Firefighting Problem

t=3

@ Protected . Saved
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What is there to do?

Maximizing the spread of influence [Kempe et al. ‘03]
Minimizing the fraction of infected population, minimizing the time of detection of

infection [Leskovec et al. ‘07, Ceren et al. ‘11]
® Maximising the number of saved vertices [Cai, Verbin, and Yang, ‘08]

® Minimising the number of burned (infected) vertices [Cai, Verbin, and Yang, ‘08, Finbow,
Hartnell, et. al., ‘09]

® Minimising the number of rounds, minimising the number of firefighters per round
[Anshelevich, Chakrabarty, et. al., ‘09]

® Saving a specific set of vertices [King, MacGillivray, ‘09]

¢ Saving a Critical Set with Firefighters is FPT [Choudhari et al. ‘17]
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Saving a Critical Set

Saving a Critical Set (SACS)
Input: An undirected n-vertex graph G, a vertex s, a subset C € V(G)\{s},

and an integer k
Question: Is there a valid k-step strategy that saves C when a fire breaks

out at s?
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Basic Definitions
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Fixed Parameter Tractability

Definition (Parameterized Problem):
A parameterization of a decision problem is a function that assigns
an integer parameter k to each input instance I.

Definition (FPT):
A parameterized problem is fixed-parameter tractable (FPT) if there
is an f(k)n* time algorithm for some constant c.

55 Models and Algorithms for Information Diffusion TGN




Separator

Ra(X,S) S
Reachable Set of X w.r.t. S

Models and Algorithms for Information Diffusion




Dominating Separator

Ry

Y
RG(X7 Sl)

AN
+ RA(X,5) CRA(X,S,)
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Important Separator

@ /mportant separator

Important separators are those which are not dominated by any other

separator
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Firetighting on Trees
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Saving a Critical Set (SACS) on Trees

Theorem: (Marx, “11)

For trees, there are at most 4* important separators of size at most k.

SACS on trees takes time O*(4*)
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Firetighting on Graphs
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Firefighting on Graphs with Important Separators

\'}

OFirefighting Solution O Important Separator

Important separators do not suffice !!!
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Saving a Critical Set: Para-NPC

Saving A Critical Set (SACS) with critical set of size 1is a YES-
instance

if and only if
k-CLIQUE is an YES-instance
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Saving a Critical Set: Para-NPC

SACS with critical set of size 1 has a successful strategy with
(k + m - *C,) firefighters in this new graph G’
if and only if
G has a clique of size k

Proof
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FPT Solution on Graphs

Models and Algorithms for Information Diffusion




Tight Separator Sequence (formal Definition)

(. S'i_l JSi

There is an algorithm that runs in time O (kmn?) that either correctly concludes
that there is no X-Y separator of size at most k or outputs the required sequence.
[Lokshtanov et al. ‘16]
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Overview of the FPT Algorithm

69

1.

Compute a sequence of separators (Tight Separator Sequence) (bounded in poly n)

Consider a behavior (labeling) of the firefighting solution on the nodes in these
separators

Consider two consecutive separators and the region between them along with the
labelled firefighting solution. Call it as border problem

Repeat for all the consecutive border problems (bounded in k). If all the border
problems return YES, then Algo return YES. Else,

Go for the new behavior (labeling) i.e. Step-2 — (#behaviors are bounded in poly k).
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Case1l: g>k

Let
q q+1
S = USL W = U Wi
=1 i=1

Claim: If G admits a tight (s,C)-separator sequence of order q in G\'Y where g >k,
then there exists a k-step firefighting strategy.

Place the firefighters on the separator = §,
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Case2:g<k

Guess the partition of the timestamps P for a firefighting strategy
Foreg., P={1,3,5,7,9, 11,13, 15,17, 19, 21, 23}

{5y {1} {13} {3,17} {9,11,15} {} {19,23} {7} {21}

Models and Algorithms for Information Diffusion




Partition over time-stamps

Let

* Ay, 45, .4y denote timestamps for nodes inside S and
* Bi,By,...,Bg4q1 denote timestamps for nodes inside W

q q+1
P — U Ai U U Bi
=1 =1

1P| =p

The number of possible partitions = (2q + 1)P < (2k + 1)*
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Possible Labeling

Guess the behaviour of the strategy restricted to S=U,_; _ S,

q

i
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Possible Labelings

2= ({f} x X)U ({b} x [2k]x) U {p}

((1,t) ifb(t) =,
Lp(v) = ¢ (b,t) if t is the earliest timestep at which v burns,
P if v is not reachable from s in G\ ({h(2) | 7 € [2k]o})

The number of possible partitions = (k + k + 1)k*¥< (3k)** < kO**
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The Border Problem : Solve Recursively
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The Border Problem : Solve Recursively

G[Si_l u W, u Sz]
G[Sl UWseU 82] G[Sq—l U Wq U SQ]

G[So UuWwiu Sl] G[Sq UWgs U Sq+1]
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Combining the Solution

Patch all the Border Problems together
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Algorithm

Algorithm 1: Solve-SACS-R(Z)

© 00 N O ok W N =

e
o

[
[

Input: An instance (G,s,C,k,g,P,Q,Y,v), p:= |P)|
Result: YEs if 7 is a YEs-instance of SACS-R, and NO otherwise.
if p =0 and s and C are in different components of G \'Y then return YES;
else return NO;
if p > 0 and s and C are in different components of G\ 'Y then return YES;
if there is no s — C' separator of size at most p then return NO;
Compute a tight s — C' separator sequence S of order p.
if the number of separators in S is greater than k then return YES;
else
for a non-trivial partition T1(P),T2(P) of P into 2q + 1 parts do
for a labeling T compatible with T;(P) do
L L if A2t (Solve-SACS-R(Z(i, T:(P), T2(P),%;))) then return YEs;

return NO
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Running Time

q+1
T(n,m,k,p) < O(n*mp) + (p+k + DX T(ngm, k,py)
=1

Recall that:
e ceachp; <k
® the depth of recursion is bounded by p, and

® at each level, the work done is proportional to kO n’m

SACS is FPT and has an algorithm with running time f(k) O(n*m)
where, f(k) = kO®oly P,
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The Spreading Model
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Firefighting: The Spreading Model

V)
t=3 =4
1
V)
—4
) _
t=2 t=4
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Spreading Vaccination Model

In the spreading model, SACS is hard as k-DOMINATING SET
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Kernels on Trees
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Kernelization

A kernelization algorithm, or simply a kernel, for a parameterized
problem Q is an algorithm A that, given an instance (I,k) of Q,
works in polynomial time and returns an equivalent instance (I’ k")
of Q. Moreover, we require that k” < k.
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Firefighting on Trees: No poly Kernels

SACS when restricted to trees does not admit a polynomial kernel.

The unparameterized version of SACS restricted to trees cross composes to
SACS restricted to trees when parameterized by the number of firefighters
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Conclusion & Future Work

Models and Algorithms for Information Diffusion




Conclusion

e HMHP & DNHP, account for topical interactions, user-user influence, user-topic patterns.

® [n DNHP the rate of generation of events is dependent not only on the users but also on the
topic or mark associated with the event.

® [n DNHP, topical interactions & user-user influence are coupled, and joint estimation of these
parameters enables flow of evidence across the parameters.

® [n both HMHP & DNHP, incorporating topical interactions and the collective inference of
parameters leads to more accurate estimation latent parameters, also, fits the real Twitter
conversations better (in terms of test likelihood) as compared to other state-of-the-art models.

® SACS is FPT when parameterized by number of firefighters.

® No polynomial sized kernel for trees.

® [n contrast to general Firefighting model, the spreading model is W[2]-Hard.
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Open Questions

e Sample complexity for Single Topic Model [Arora et al. 2012, Bhattacharya
Kannan, 2020]

e Bayesian Non-Parametric

e Scalable inference (and log-likelihood calculation) for cascade-based
models. (Can this be framed as an FPT problem?)

e Sketches to maintain high dimensional matrices [Tassarotti et al. 2019]

e Priors for incorporating correlation among parameters
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Open Questions

e DProbabilistic spread of fire
e Vaccination Strategies [Grauer et al., 2020]
e Maintaining separators in a streaming and/or dynamic settings

e Firefighter over insertion stream of edges and/or in a dynamic streams
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Thank You!

Questions?
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Marked Temporal Point Process (MTPP)

® ¢ LS ® 'S 'S ® ® 'S ¢ ® 'S ® S

o

Time

H = {60 = (tOgnO)ael — (tlanl)a I (tnann)}
tieRym e’

e Sequence of events of type n; at times ¢;

— Continuous Time
— Discrete, continuous (or mixed) marks (could be vector of marks)
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Self-exciting Point Process (Univariate Hawkes Process)

Fig. 1
7T T T, T T T 1 1 T, T T, T Tl’]'r:;-le T T. T, T,
: : Fig. 3
Time-stamps are characterized by an
intensity function: =
A(t)dt := Pr (event in [t + dt) | H-) = - I _

Letc, =v
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Dataset + Baseline

e HWK + DIAG:
o  Simplified HMHP with diagonal topical interactions

e HWK x LDA:
o Network Hawkes model for cascade structure and time-stamps

o LDA mixture model for the textual content

e HTM (Hawkes Topic Model)
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HMHP Results: Semi-Synthetic Dataset

Higher the better

HMHP | HWK+DIAG | HWKXLDA
ACCURACY |0.58 0.36 0.37
RECALL @1 | 0.595 0.373 0.380
RECALL @3 | 0.778 0.584 0.589
RECALL @5 | 0.838 0.674 0.678

NETWORK RECONSTRUCTION

HMHP | HWK+DIAG | HWKXLDA
MRE 0.448 0.565 0.552
MRE 0.398 0.520 0.496
(Nyy=100)

HMHP performs
better at both Parent
Identification and
Network
Reconstruction tasks.

Lower the better
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DNHP Results: Semi-Synthetic Dataset

PARENT IDENTIFICATION Higher the better

DNHP HMHP
ACCURACY 0.45 0.28
RECALL @1 0.52 0.29 DNHP performs better
RECALL @3 0.73 0.46 than HMHP .a’f b.()th
RECALL @5 o1 e Parent Identification
and Network
Reconstruction tasks.
DNHP HMHP
MRE 0.39 0.69
MRE (Ny,= 100) 0.28 0.66 Lower the better
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Tight Separator Sequence

Let X, Y be two subset of vertices in the graph G.
Then, a tight (X,Y)-reachability sequence of order k is an ordered collection
H={H, H,, ... H,/ of sets of V(G) satisfying the following properties

1. H,CH,C-CH, B

Sg+1

S

2. IN(H)I <k foralli, 1<i<g*™ Si1 S
H;
3. S;=N(H)), foralli, 1<1i<gqisaminimal (X,Y)-separator in G
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Saving a Critical Set: Para-NPC

v
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