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Objectives of the Firefighting Problem

• Maximising the number of saved vertices [Cai, Verbin, and Yang, 
08] 

• Minimising the number of burned vertices [Cai, Verbin, and 
Yang, 08, Finbow, Hartnell, et. al., 09] 

• Minimising the number of rounds, minimising the number of 
firefighters per round [Anshelevich, Chakrabarty, et. al., 09]  

• Saving a specific set of vertices [King, MacGillivray, 09]
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Saving a Critical Set (SACS) 

This is a test

SACS:

Input:An undirected n-vertex graph G, a vertex s, a subset C ✓ V (G) \ {s},
and an integer k.

Question:Is there a valid k-step strategy that saves C when a fire breaks out

at s?

1
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Basic Definitions



Fixed-Parameter Tractability

Definition:  A parameterized problem is fixed-parameter 
tractable (FPT) if there is an f(k)nc time algorithm for 
some constant c.

Definition: A parameterization of a decision problem is a 
function that assigns an integer parameter k to each input 
instance I.
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Separators

Y

X

SRG(X,S)

Test

A subset S ✓ V (G) \ (X [ Y ) is said to be a separator if RG(X,S) \ Y = �
or in other words there is no path from X to Y in G \ S

A set S1 is said to be a dominating separator if

1. |S1|  |S| and

2. RG(X,S1) ✓ RG(X,S)

1

Reachable Set of X w.r.t. S
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Dominating Separators

S S1
X

Y

RG(X,S)

RG(X,S1)

A separator S1 is said to be dominating w.r.t separator S

• |S1|  |S|

• RG(X,S) ✓ RG(X,S1)

1
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Important Separators

Important separators are those which are not dominated by 
any other separator
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Firefighting with Important Separators

Test

A subset S ✓ V (G) \ (X [ Y ) is said to be a separator if RG(X,S) \ Y = �
or in other words there is no path from X to Y in G \ S

A set S1 is said to be a dominating separator if

1. |S1|  |S| and

2. RG(X,S) ✓ RG(X,S1)

Let X, Y be two subset of vertices in graph G. Then, a tight (X, Y )-

reachability sequence of order k is an ordered collection H = {H1, H2, ..., Hq}
of sets in V (G) satisfying the following properties:

1. H1 ⇢ H2 ⇢ · · · ⇢ Hq,

2. |N(Hi)|  k, 8i, 1  i  q,

3. Si = N(Hi), 81  i  q is a minimal (X, Y )-separator in G

There is an algorithm that runs in time O(kmn2
) that either correctly con-

cludes that there is no X � Y separator of size at most k or outputs the

required sequence.

Theorem: (Marx, 2011)

For trees, there are at most 4

k
important separators of size at most k.

SACS on trees takes time O⇤
(4

k
)
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Important Separators

Important separators do not suffice !!!
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Important Separators

v

s t

Important separatorFirefighting solution

Important separators do not suffice !!!
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Saving a Critical Set - NPC

Saving A Critical Set (SACS) with critical set of size 1 is a YES-instance  
if and only if  

k-CLIQUE is an YES-instance
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Saving a Critical Set - NPC
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Saving a Critical Set - NPC

Test

A subset S ✓ V (G) \ (X [ Y ) is said to be a separator if RG(X,S) \ Y = �
or in other words there is no path from X to Y in G \ S

A set S1 is said to be a dominating separator if

1. |S1|  |S| and

2. RG(X,S) ✓ RG(X,S1)

Let X, Y be two subset of vertices in graph G. Then, a tight (X, Y )-

reachability sequence of order k is an ordered collection H = {H1, H2, ..., Hq}
of sets in V (G) satisfying the following properties:

1. H1 ⇢ H2 ⇢ · · · ⇢ Hq,

2. |N(Hi)|  k, 8i, 1  i  q,

3. Si = N(Hi), 81  i  q is a minimal (X, Y )-separator in G

There is an algorithm that runs in time O(kmn2
) that either correctly con-

cludes that there is no X � Y separator of size at most k or outputs the

required sequence.

Theorem: (Marx, 2011)

For trees, there are at most 4

k
important separators of size at most k.

SACS on trees takes time O⇤
(4

k
)

SACS with size 1 has a successful strategy with (k +m� kC2) firefighters

in this new graph G0
if and only if G has a clique of size k.

1
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Tight Separator Sequence

Test

A subset S ✓ V (G) \ (X [ Y ) is said to be a separator if RG(X,S) \ Y = �
or in other words there is no path from X to Y in G \ S

A set S1 is said to be a dominating separator if

1. |S1|  |S| and

2. RG(X,S) ✓ RG(X,S1)

Let X, Y be two subset of vertices in graph G. Then, a tight (X, Y )-

reachability sequence of order k is an ordered collection H = {H1, H2, ..., Hq}
of sets in V (G) satisfying the following properties:

1. H1 ⇢ H2 ⇢ · · · ⇢ Hq,

2. |N(Hi)|  k, 8i, 1  i  q,

3. Si = N(Hi), 81  i  q is a minimal (X, Y )-separator in G

Furthermore, there is an algorithm that runs in time O(kmn2
) that either

correctly concludes that there is no X � Y separator of size at most k or

outputs the required sequence.

1

[M. S. Ramanujan, 13]
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Tight Separator Sequence

S C

S1

Sq+1
S0

Sq

Wq+1W1 … … Wi

SiSi�1

… …

{ {H1

Hi

Test

A subset S ✓ V (G) \ (X [ Y ) is said to be a separator if RG(X,S) \ Y = �
or in other words there is no path from X to Y in G \ S

A set S1 is said to be a dominating separator if

1. |S1|  |S| and

2. RG(X,S) ✓ RG(X,S1)

Let X, Y be two subset of vertices in graph G. Then, a tight (X, Y )-

reachability sequence of order k is an ordered collection H = {H1, H2, ..., Hq}
of sets in V (G) satisfying the following properties:

1. H1 ⇢ H2 ⇢ · · · ⇢ Hq,

2. |N(Hi)|  k, 8i, 1  i  q,

3. Si = N(Hi), 81  i  q is a minimal (X, Y )-separator in G

There is an algorithm that runs in time O(kmn2
) that either correctly con-

cludes that there is no X � Y separator of size at most k or outputs the

required sequence.

1
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Case-1: q > k

Let S = [q
i=1Si W = [q+1

i=1Wi

Claim: If G admits a tight (s, C)-separator sequence of order q in G \ Y
where q > k, then there exists a k-step firefighting strategy.

Place the firefighters on the separator Sq

1
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S C

Case-2: q < k

Let S = [q
i=1Si W = [q+1

i=1Wi

Claim: If G admits a tight (s, C)-separator sequence of order q in G \ Y
where q > k, then there exists a k-step firefighting strategy.

Place the firefighters on the separator Sq

The number of possible partitions = (2q + 1)

p  (2k + 1)

k

The number of possible labelings = (p+ k + 1)

pk  (3k)k
2  k(O(k2

))

Guess the behaviour of the strategy restricted to S = [q
i=1Si

Guess the partition of the timestamps P for a firefighting strategy

For e.g., P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

1

A separator S1 is said to be dominating w.r.t separator S

• |S1|  |S|

• RG(X,S) ✓ RG(X,S1)

For e.g., P = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}

1
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{5} {1} {13} {3,17} {9,11,15} { } {19,23} {7} {21}
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Partitioned Timestamps

Let S = [q
i=1Si W = [q+1

i=1Wi

Claim: If G admits a tight (s, C)-separator sequence of order q in G \ Y
where q > k, then there exists a k-step firefighting strategy.

Place the firefighters on the separator Sq

The number of possible partitions = (2q + 1)

p  (2k + 1)

k

The number of possible labelings = (p+ k + 1)

pk  (3k)k
2  k(O(k2

))

Guess the behaviour of the strategy restricted to S = [q
i=1Si

Guess the partition of the timestamps P for a firefighting strategy

For e.g., P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Let

• A1, A2, . . . , Aq denote the timestamps for the nodes inside S and

• B1, B2, . . . , Bq+1 denote the timestamps for the nodes inside W .

P = [q
i=1Ai [ [q+1

I=1Bi

1
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|P | = p

1
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Possible Labelings
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Possible Labelings

L = ({f}⇥X) [ ({b}⇥ [2k]E) [ {p}
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Possible Labelings

Lh(v) =

8
><

>:

(f, t) if h(t) = v,

(b, t) if t is the earliest timestep at which v burns,

p if v is not reachable from s in G \ ({h(i) | i 2 [2k]O})
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Possible Labelings

Lh(v) =

8
><

>:

(f, t) if h(t) = v,

(b, t) if t is the earliest timestep at which v burns,

p if v is not reachable from s in G \ ({h(i) | i 2 [2k]O})

L = ({f}⇥X) [ ({b}⇥ [2k]E) [ {p}
Let S = [q

i=1Si W = [q+1
i=1Wi

Claim: If G admits a tight (s, C)-separator sequence of order q in G \ Y
where q > k, then there exists a k-step firefighting strategy.

Place the firefighters on the separator Sq

The number of possible partitions = (2q + 1)

p  (2k + 1)

k

The number of possible labelings = (p+ k + 1)

pk  (3k)k
2  k(O(k2))

Guess the behaviour of the strategy restricted to S = [q
i=1Si

Guess the partition of the timestamps P for a firefighting strategy

For e.g., P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Let

• A1, A2, . . . , Aq denote the timestamps for the nodes inside S and

• B1, B2, . . . , Bq+1 denote the timestamps for the nodes inside W .

P = [q
i=1Ai [ [q+1

I=1Bi

1
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Solving the Border Problem Recursively
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Solving Recursively
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Solving Recursively
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Combining the solutions
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Algorithm

23:12 Saving Critical Nodes with Firefighters is FPT

To begin with, V(Hi) = V(Gi) [ {s?, t?}
Let v 2 V(Gi) be such that Ti(v)[0] = b. Use ` to denote Ti(v)[1]/2. Now, we do the
following:

Add k+ 1 internally vertex disjoint paths from s? to v of length `+ 1, in other words,
these paths have `- 1 internal vertices.
Add k+ 1 internally vertex disjoint paths from v to g of length k- `- 1.

Let v 2 V(Gi) be such that Ti(v) = p. Add an edge from v to t?.
We also make k+ 1 copies of the vertices t? and all vertices that are labeled either burned
or saved. This ensures that no firefighters are placed on these vertices.

For 1 6 i 6 q + 1, the instance Ihi,T1(P),T2(P),Tii is now defined as (�(Gi,Ti), s?,C =
{t?},k,g,Pi,Qi, Yi,�i).

Phase 2 — Merging. Our final output is quite straightforward to describe once we have the
h[Ti, i]’s. Consider a fixed partition of the available time steps P into T1(P) and T2(P), and
a labeling T of S compatible with T1(P). If all of the (q+ 1) instances Ihi,T1(P),T2(P),Tii,
1 6 i 6 q + 1 return YES, then we also return YES, and we return NO otherwise. Indeed,
in the former case, let h[i,T1(P),T2(P),T] denote a valid partial firefighting strategy for the
instance Ihi,T1(P),T2(P),Tii. We will show that h?, described as follows, is a valid partial
firefighting strategy that saves C.

For the time steps in Q, we employ firefighters according to �.
For the time steps in T1(P), we employ firefighters according to T. This is a well-defined
strategy since T is a compatible labeling.
For all remaining time steps, i.e, those in T2(P) = {B1, . . . ,Bq+1}, we follow the strategy
given by h[i,T1(P),T2(P),T].

It is easily checked that the strategy described above agrees with h[i,T1(P),T2(P),T] for all i.
Also, the strategy is well-defined, since T1(P) and T2(P) form a partition of the available time
steps. Next, we will demonstrate that h? is indeed a valid strategy that saves C, and also
analyze the running time of the algorithm.

Algorithm 1: Solve-SACS-R(I)
Input: An instance (G, s,C,k,g,P,Q, Y,�), p := |P|

Result: YES if I is a YES-instance of SACS-R, and NO otherwise.
1 if p = 0 and s and C are in different components of G \ Y then return YES;
2 else return NO;
3 if p > 0 and s and C are in different components of G \ Y then return YES;
4 if there is no s- C separator of size at most p then return NO;
5 Compute a tight s- C separator sequence S of order p.
6 if the number of separators in S is greater than k then return YES;
7 else
8 for a non-trivial partition T1(P),T2(P) of P into 2q+ 1 parts do
9 for a labeling T compatible with T1(P) do

10 if
Vq+1

i=1 (Solve-SACS-R(Ihi,T1(P),T2(P),Tii)) then return YES;

11 return NO

30



The Measure drops 

The trivial measure, µ(G) = k i.e. the number of firefighters, does not work.

Proposed measure is µ(G) = p, which is the number of timestamps.

Claim: The quantity p always decrease when we recurse

1

The trivial measure, µ(G) = k i.e. the number of firefighters, does not work.

Proposed measure is p, which is the number of timestamps.

Claim: The quantity p always decrease when we recurse

1

31



Running Time

T (n,m, k, p)  O(n2mp) + (p+ k + 1)

kp
Pq+1

I=1 T (ni,mi, k, pi)

Notice that p  k

T (n,m, k, p)  O(n2mp) + f(k)p
Pq+1

I=1 T (ni,mi, k, pi)

Recall that each pi  k, the depth of the recursion is bounded by p, and
at the each level the work done is proportional to kO(kp)n2m

1
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SACS is FPT and has an algorithm with running time f(k)O(n2m) where,

f(k) = kO(k3)

1
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Kernels on Trees



Kernelization

34

A kernelization algorithm, or simply a kernel, for a 
parameterized problem Q is an algorithm A that, given 
an instance (I,k) of Q, works in polynomial time and 
returns an equivalent instance (I’′,k’′) of Q. Moreover, we 
require that k’ ≤ k.  

  



No Poly Kernels on Trees

The unparameterized version of SACS restricted to trees cross composes to

SACS restricted to trees when parameterized by the number of firefighters

1
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No Poly Kernels on Trees

The unparameterized version of SACS restricted to trees cross composes to

SACS restricted to trees when parameterized by the number of firefighters

1

The unparameterized version of SACS restricted to trees cross composes to

SACS restricted to trees when parameterized by the number of firefighters

SACS when restricted to trees does not admit a polynomial kernel, unless

NP ✓ coNP/poly

1
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The Spreading Model



Spreading Vaccination Model
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Spreading Vaccination Model

In the spreading model, SACS is as hard as k-DOMINATING SET

Theorem:(Marx. 2011)

There are at most 4

k
important separators for trees of size at most k
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Conclusion



40

Conclusion and Future Work

1. Saving a Critical Set when parameterized by number of 
firefighters is FPT 

2. There are no polynomial kernels for trees 

3. In contrast to the general firefighting model, the spreading 
model is W[2]-Hard 

4. Future Work:  
• Kernels for graphs 
• Smarter FPT algorithm 
• Firefighting on graphs with bounded clique width, bounded 

clique-cover number, interval graphs, split graphs, 
permutation graphs, etc.



Questions?



Thank You


