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User Network + Time-series of Tweets (Mixture of conversations)

HMHP Generative Model

e Coupled Multivariate Hawkes Processes and (Hidden) Markov Chains
e Coupled inference: Collapsed Gibbs sampling
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Hawkes Process.

For each topic k: sample ¢, ~ Diry (o)
For each topic k: sample T x ~ Dirg(3):
For each node v: sample ¢, ~ Dirg(7y)
For each event e at node c. = v:

Generate (te,ce,z.) for all events according Multivariate

'Events are generated accordmg.
.to Multivariate Hawkes Process. '

, Topic of event is sampled as one,
. . |
i which 1s related to or:

a) 1) if z. = 0 (level O event): . n,ltohre P
draW a tOpiC ,,78 ~ DiSCT@t@K(¢U) ilIl cracts W1 . parcnts . OplC.:
ii) else: (Markoy Chain over Topics)

draw a topic ne ~ Discretex (T ,. )
b) Sample document length N. ~ Poisson(\)

c) Forw=1..

. Ne: draw word xe o, ~ DiSCTetew(Cne)
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Separate these conversations out...!!!
1) What are the different conversations i.e. Parent-Child Structure among Tweets?
(Cascade Reconstruction)
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3) Who responds to whom and how quicky?
(User-User Influence)
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Jared Loughner inestg . JamesBond

4) What are the various Topics in the data
and how do topics interact? (Topics and
Topical Interactions)

HTM [1] v/s HMHP

Repeating patterns in the topics of the
parent and child events

Generation of Topic of child event in HTM [1]
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Incident. Released at 9.05am/8 Mar 2014

~
[#MASalert] Statement By Our Group

If event e is not spontaneous, then

Topic (e) ~ Normal (Topic (parent(e)), o>1)

CEO, Ahmad Jauhari Yahya on MH370

V/S

Generation of Topic of child event in HMHP

'

Missing #MalaysiaAirlines flight carrying
227 passengers (including 2 infants) of 13

nationalities and 12 crew members.

If event e is not spontaneous, then

Topic (e) ~ T (Topic (parent(e)))

where, T is Topical Interaction Distribution

Inference

P (parent(e) = f| Topics, W, u, timeStamps)
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Why Topical Interactions?

(" Gellman:My definition of whistleblowing:are you
shedding light on crucial decision that society should be
L making for itself. #snowden ) ® Parent-child from different topics

l \

( Gellman we are living inside a one way mirror,they
& big corporations know more and more about us

and we know less about them #sxsw
TN
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Random walk over topics to detect topic drifts

- from TV shows to Entertainment

e Topic pair occurs frequently
o HMHP assigns to different topics with
high transition probability

Frequent topical transitions from
football related hashtags to baseball

agentsofshield, arrow, tvtag, supernatural,

|

chicagoland

steelers,browns,seahawks,

NG
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related hashtags

]

fantasyfootball, nfl

Topic-2: tvtag, houseofcards, agentsofshield, arrow,

(T, opic-1: idol, bbcan2, havesandhavenots, thegamebet\

Topic-3: ioundcloud, hiphop, mastermind, nowplaying ,

mlb, orioles, rays, usmnt, redsox
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Influence Error

User-User

Cascade Recon Topic

Accuracy (F'l Score)

Reconstruction Accuracy
(Semi-Synthetic Data)

Generalization Performance
(Twitter Data)

Significant improvement over HTM [1] on scaled down datasets.
HTM [1] does not scale for our dataset.
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