Topics are not Marks : Modeling Text-based Cascades using Multi-network Hawkes Process

Srikanta Bedathur (IIT Delhi), Indrajit Bhattacharya (TCS Research), Jayesh Choudhari, Anirban Dasgupta (IIT Gandhinagar)

Network (hidden) + *Time-series of Events*

Online Activity

Financial Trading

Topics are not Marks: Modeling Cascades

Network (hidden) + *Time-series of Events*

Jammu and Kashmir (union territory): Revision history

View logs for this page (view filter log)

(cur prev)	17:53, 16 August 2019 Cordyceps-Zombie (talk contribs) (22,923 bytes) (+9) (Tags: Mobile edit, Mobile web edit, PHP7)
 (cur prev) domain, replace 	05:49, 16 August 2019 Bender the Bot (talk contribs) \mathbf{m} (22,914 bytes) (-6) (\rightarrow top: switch to .com for Google Books; same content, but m d: https://books.google.co.in/ \rightarrow https://books.google.com/ (3)) (Tags: AWB, PHP7)
• (cur prev) 🔿	20:40, 15 August 2019 Cordyceps-Zombie (talk contribs) (22,920 bytes) (+4) (Tags: Mobile edit, Mobile web edit, PHP7)
(cur prev) 🔿	20:38, 15 August 2019 DeluxeVegan (talk contribs) (22,916 bytes) (-9) (WP:INFOBOXFLAG) (Tags: Mobile edit, Mobile web edit, PHP7)
(cur prev) 🔿	20:21, 15 August 2019 VinyS (talk contribs) (22,925 bytes) (+5)
(cur prev) 🔿	06:00, 15 August 2019 DeluxeVegan (talk contribs) (22,920 bytes) (-9) (Tags: Mobile edit, Mobile web edit)
(cur prev)	02:55, 15 August 2019 Fowler&fowler (talk contribs) (22,929 bytes) (+3) (→top: needs to be in the same sentence)

Addition **†** Refute **†**

What should I do as a computer science undergraduate?

Jeff Erickson, CS professor, University of Illinois at Urbana-Champaign

Answered Tue - Upvoted by Harsh Suryavanshi, M-Tech Computer Science & Information Security, Indraprastha Institute of Information Technology, D...

- 1. Eat. Sleep. Bathe. Go outside. Exercise. Make friends. Have fun.
- 2. Read. Write. Ask. Listen. Learn. Practice. Try. Fail. Improve. Repeat.

949 views - View Upvoters - View Sharers - Answer requested by Naballa Blesson

↓ Upvote 95 ♀ Share 1

Twitter: Network + Time-series of Tweets

Cascades (Separate Conversations)

Just separate this conversations out!!!

Marked Temporal Point Process (MTPP)

$$\mathcal{H} = \{e_0 = (t_0, \eta_0), e_1 = (t_1, \eta_1), \dots, e_n = (t_n, \eta_n)\}$$
$$t_i \in \mathbb{R}, \eta_i \in \mathbb{Z}$$

- Sequence of events of type η_i at times t_i
 - Continuous Time
 - Discrete, continuous (or mixed) marks (could be vector of marks)

Marked Temporal Point Process (MTPP)

Time-stamps characterized by an *intensity* function:

$$\lambda(t) := \mathbb{P}\{\text{event in } [t, t + dt) | \mathcal{H}_t\}$$

Image Source: Deep Reinforcement Learning of Marked Temporal Point Processes, 2019, Abir et al.

For each event, topics are sampled later independently of the time-stamps Topics are not Marks: Modeling Cascades

Likelihood MTPP

Note: The time-stamps t_i and the marks η_i are modeled independently.

Unified Model 12

Unified Marked Multivariate Hawkes Process

For each event, topics come along with the time-stamps

HMHP Model v/s Unified Model

HMHP Model v/s Unified Model

Likelihood Unified MTPP

HMHP Model (HTM, NetHawkes) v/s Unified Model HMHP (HTM, NetHawkes) **Unified Model** (each user node) Intensity Function (a user-topic pair) Base Rate $\mathbf{v} = \underbrace{\mathbf{v}, \mathbf{k}}_{\mu_{\mathbf{v}}}(t) = \mu_{v}(t) \mu_{k}(t)$ (v) $\mu_v(t) = \mu_v(t)$ Impulse Response $\overrightarrow{\mathbf{v},\mathbf{k}}$ $h_{\mathrm{ml},\mathbf{v}}(\Delta t) = W_{u,v} \mathcal{T}_{k,k'} f(\Delta t)$ $h_{u,v}(\Delta t) = W_{u,v}f(\Delta t)$

Unified Model Inference

- User-user weights and topic-topic weights are now coupled → lack of conjugacy property, implying that both the set of weights need to be actually sampled
- Interestingly, Gibbs sampling is still efficient as they are both follow conditional Gamma distributions

$$P(W_{u,v}|\boldsymbol{\mathcal{T}},\boldsymbol{z}) \propto P(W_{u,v}|\alpha_1,\beta_1) \left(W_{u,v}^{N_{u,v}} exp\left(-\beta W_{u,v}\right) C \right)$$

 This coupling in fact, allows the flow of evidence between two user-topic tuple pairs, this is expected to be useful for user pairs or topic pairs between which the data is scarcer

Inference Tasks

Queensland 0.480.25

- User Temporal Dynamics
- Preferred topics of each user
- Network Strengths (user-user influence)

- Topics
 - Topical Interactions

HMHP Model (HTM, NetHawkes) v/s Unified Model

Experiments & Results: Simulated data

User graph:

- Top 50 authors from High energy Physics
- Edge weights generated using a Gamma

Topic graph

- Erdos-Renyi graph with 10 nodes and edge prob = 0.5
- Edge weights generated using Gamma (scale parameter proportional to distance in original graph

Topic-word distributions: Dirichlet

Data generated using the Unified model with above parameters

Tasks:

- Reconstructing the parameters
- Generalization, i.e. likelihood on test data

Experiments & Results: Simulated data

Topic evaluation results

	MAE	Med. AE	Std. Dev.
HMHP	0.009	0.0088	0.0131
Uni-1G	0.009	0.0088	0.0123
Uni-2G	0.009	0.0088	0.0122
Uni-DG	0.009	0.0088	0.0124

Parent identification results

	Acc.	R @1	R @3	R @5
HMHP	0.375	0.417	0.651	0.754
Uni-1G	0.391	0.430	0.668	0.769
Uni-2G	0.391	0.431	0.668	0.770
Uni-DG	0.392	0.431	0.668	0.769

Summary and Future Work

Proposed a new model for modeling information cascades on networks, general enough to incorporate number of previous models

Critical step is joint modeling of topical and temporal information-- topics treated at par with users

Interesting use cases on the way-- when we decide what is observable and what is not !

Joint modeling allows information to flow across user-topic pairs

Initial experiments on simulated data show better performance when compared to related models

Full version under review

Thank You