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Problem Statement

Suppose we have a social network, and we want to spread some meme
throughout the network (e.g. for marketing). We are able to possibly seed
a small number of users with the meme and then onwards it propagates
through the network using word of mouth.

How do we formalize this question, and come up with cost-effective ways
of seeding to be able to reach out to the maximum number of users?
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Introduction

A social network – Graph of relationships and interactions within a
group of individuals

A meme – idea, video, innovation – an element of a culture or system
of behaviour

cell phone among college students
adoption of new drug within medical profession
rise of political movement, etc.
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Problem Setting

Given:

Suppose we are given the estimates for the influence between the
individuals and

a budget for k nodes to be chosen

Aim:

To trigger a cascade of influence such that maximum number of
nodes are influenced

But:
how should we choose the few key (k) individuals to use for seeding this
process?
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Operational view of Social Network

Social Network – Directed Graph

Nodes adopting the idea are “Active” and nodes not adopting the
idea are “Inactive”

An “Inactive” node gets activated only because of its neighbors

σ(A) = Expected number of active nodes at the end of process,
where A is the initial set of active nodes (targeted k nodes)
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Models of Influence

Basic models of influence
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Linear Threshold Model (LTM)

Node v is influenced by its neighbor according to the weight
bv,w ∈ [0, 1]

Each node v has a threshold θv ∈ U ∼ [0, 1]

Given the initial set of active nodes A0 and the thresholds, the
diffusion process unfolds deterministically in discrete steps:

in step t all nodes active in step t− 1 remain active
each currently inactive node becomes active iff the total weight of the
active neighbors is θv ∑

w→v:w active

bv,w ≥ θv

The process runs until no more activations are possible

σ(A) is calculated as the expectation over all possible threshold values
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Independent Cascade Model (ICM)

Given the initial set of active nodes A0 the diffusion process unfolds
as follows:

when a node v first becomes active at time t it gets a single chance to
activate its neighbor w with a probability pv,w – independently of the
history
if v succeeds, w becomes active at step t+ 1; whether or not v
succeeds, v doesn’t gets any more chance to activate w

The process runs until no more activations are possible

σ(A) is calculated as the expectation over all possible outcomes of
success or failure
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Influence Maximization is NP-Hard for LTM

V C ≤p Influence maximization (LTM)

Instance of Vertex Cover (VC) problem:

Undirected graph G = (V,E), |V | = n,
integer k

a

e

b

d

c

Instance of Influence Maximization Problem:

Direct all the edges in both directions

Assign each edge e = (u, v) a weight of
1/deg(v)

a

e

b

d

c

3

2

1

2

2

1/2 1/3

1/2

1/3 1/2

1/2

11/2

1/3

1/2

If there is a VC S in G of size k, then σ(A) = n, where A0 = S
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Influence Maximization is NP-Hard for ICM

SC ≤p Influence maximization (ICM)

Instance of Set Cover (SC) problem:

Collection of subsets S1, . . . , Sm of ground set U = {u1, . . . , un}
Select k of the subsets such that ∪ki=1Si = U

S1

S2

S3

S4

S5

U1

U2

U3

U4

Instance of Influence maximization problem:

Directed bipartite graph of n+m nodes

pi,j = 1 if uj ∈ Si
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Activating k nodes corresponding to sets in Set cover activates n
nodes of U

If σ(A) ≥ n+ k, then set cover problem is solvable
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Submodular Functions
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Submodularity

If Ω is a finite set, a submodular function is a set function f : 2Ω → R,
where 2Ω denotes the power set of Ω, which satisfies one of the following
equivalent definitions.

1 For every X,Y ⊆ Ω with X ⊆ Y and every v ∈ Ω\Y we have that
f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y ).

2 For every S, T ⊆ Ω we have that f(S) + f(T ) ≥ f(S ∪T ) + f(S ∩T ).

Ref:http://www.cs.cmu.edu/~dgolovin/papers/submodular_survey12.pdf
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Submodularity Approximation

Theorem ([Nemhauser et. al, 1978])

Let σ(·) be a non-negative monotone submodular function. Then the
greedy algorithm that (for k iterations) adds an element with the largest
marginal increase in σ(·) produces a k − element set A such that

σ(A) ≥ (1− 1/e) ·max|A∗|≤kσ(A∗)

Also, using (1 + δ)-approximate values for the function to be optimized,
gives (1− 1/e− ε)-approximation, where ε depends on δ and goes to 0 as
δ → 0.
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Greedy Approximation Algo

Algorithm 1 Greedy Approximation Algorithm

1: Start with A = ∅
2: while |A| ≤ k do
3: For each node x use repeated sampling to approximate σ(A ∪ x) to within (1 ± ε)

approximation
4: Add the node with the largest estimate for σ(A ∪ x) to A
5: end while
6: Output set of nodes A

Claim

If the diffusion process starting with A is simulated independently at least

Ω

(
n2

ε2
ln(1/δ)

)
times, then the σsim(A) over these simulations is a (1 + ε)-approximation
to σ(A), with probability at least (1− δ)
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Submodularity for Models
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Submodularity for ICM

An active node v flips a bias coin with Pr(head) = pv,w
(It doesn’t matter whether the coin was flipped at the time when v
got active or the start of the whole process)

(Continuing with the same reasoning) we can assume that all the
coins corresponding to the edges are flipped at the start of the
process (each independently), and the results are checked later in the
event when v is active and w is still inactive

Live Edges – for which the coin flip indicated an activation will be
successful and the remaining edges are termed as Blocked Edges

It is easy to see that

A node v is active if and only if there is a path from some node in A to v
only through “live” edges
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Submodularity for ICM

Consider a probability space in which each sample point specifies one
possible set of outcomes for all the coin flips on the edges.

Let X: sample point in the space

σX(A): Number of activated nodes when A is the initial activation
set and X is one of the set of outcomes

R(v,X): Set of all nodes that can be reached from v on a path
consisting entirely of “live” edges

∴ σX(A) = ∪v∈AR(v,X)
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Submodularity for ICM

Claim

For a fixed outcome X, the function σX(·) is submodular

Proof

Let S and T be the two sets of nodes such that S ⊆ T

σX(S ∪ v)− σX(S) = #nodes(R((S ∪ v), X))− ∪u∈SR(u,X)

#nodes(R((S ∪ v), X)−∪u∈SR(u,X)) ≥ #nodes(R((T ∪ v), X)−∪u∈TR(u,X))

Therefore,
σX(S ∪ v)− σX(S) ≥ σX(T ∪ v)− σX(T )

Finally,

σ(A) =
∑

outcomes X

Pr[X] · σX(A)
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General Models
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General Threshold Model

Decision of node v to become active can be based on arbitrary
monotone function of the set of active neighbors

Each node v has associated with a monotone threshold function fv
mapping subsets of v′s neighbors to a real numbers in [0,1], and
f(∅) = 0

Each node v has a threshold θv ∈ U ∼ [0, 1]

Node v becomes active at time t iff fv(S) ≥ θv, where S is the set of
neighbors of v that are active in time t− 1
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General Cacade Model

Define pv(u, S) ∈ [0, 1], as an increamental function, where S is set
of neighbors of v that have already tried and failed to activate v and
u /∈ S
We are only interested in the cascade models defined by an
increamental functions that are order independent in the following
sense:
let S = {u1, u2, . . . , u|S|}, and π, ψ are two arbitrary permutations of
1, 2, . . . , |S|, then

|S|∏
i=1

(1− pv(uπ(i), {uπ(1), . . . uπ(i−1)})) =

|S|∏
i=1

(1− pv(uψ(i), {uψ(1), . . . uψ(i−1)}))
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Equivalence

Consider an instance of general threshold model with fv as threshold
functions

Given that the nodes in S have tried and failed, then node v′s
threshold θv ∈ (fv(S), 1]

Also, θv ∈ U ∼ [0, 1]

Therefore,

pv(u, S) =
fv(S ∪ u)− fv(S)

1− fv(S)

where, u is neighbor of v and is not in S yet
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Equivalence

Consider node v in cascade model and let S = {u1, u2, . . . , uk} be its
neighbors

Assume that the nodes in S try to activate v in order u1, u2, . . . , uk
and let Si = {u1, u2, . . . , ui}. Then,

Pr[v not activated] =

k∏
i=1

(1− pv(ui, Si−1))

Then, Threshold Model’s activation function fv(S) can be given as in
terms of probabilities from Cascade Model

fv(S) = 1−
k∏
i=1

(1− pv(ui, Si−1))
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Equivalence

Thus, each individual node becomes active with the same probability
under both the processes, i.e.

fv(S ∪ u)− fv(S)

1− fv(S)
= 1−

k∏
i=1

(1− pv(ui, Si−1))
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Non-Progressive Process
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Non-Progressive Case

Nodes can become active from inactive as well as inactive from active

Model Formulation (Simplest way):

Each node v chooses a new threshold at each time step t as θ
(t)
v

Node v will be active in step t iff fv(St−1) ≥ θ(t)v , where St−1 is the
set of neighbors active at time step (t− 1)
Objective Function: σ(A) =

∑
t(#nodes active in step t)
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Non-Progressive Case

τ – Time horizon for which the process will run

Intervention: Activation of a particular node v at time t ≤ τ
The question is which k − interventions should be made to
maximize the influence if the process it to run for τ time steps?

Layered graph

Given a graph G = (V,E) and the time limit τ , Gτ = (τ · |V |, τ · |E|)
Let the tth layer of Gτ be

Lt = {vt|v ∈ V }

For each node vt the influence function is defined as

f ′vt(S) = fv({u|ut−1 ∈ S})
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Non-Progressive Case

Theorem (Non-progressive Influence maximization)

The non-progressive influence maximization problem on G over a time
horizon τ is equivalent to the progressive influence maximization problem
on the layered graph Gτ . Node v is active at time t in the non-progressive
process iff vt is activated in the progressive process.

Jayesh Choudhari (CSE) Quals(Phase - II) May 11, 2016 32 / 50



General Marketing Strategies
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General Marketing Strategies

In general there might be m different number of marketing actions
Mi available, each of which may affect some subset of nodes by
increasing their probabilities of activation

The more we spend on any action the stronger its effect will be;
different nodes may respond to marketing actions in different ways

Let x = [x1, x2, . . . , xm] be the investment vector corresponding to
marketing action M = [M1,M2, . . . ,Mm], such that the total
investments does not exceed some budget

Pr[node v will become active] = hv(x)

Assume that function hv(x) is non-decreasing and satisfies
“diminishing returns” property, i.e. ∀x ≥ y and a ≥ 0,

hv(x+ a)− hv(x) ≤ hv(y + a)− hv(y)
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General Marketing Strategies

As a function of marketing strategy x, each node v becomes active
with a probability hv(x), resulting in a (random) set of initial active
nodes A

Given the initial active set A, try to maximize the expected size of the
final active set σ(A)

The expected revenue of the marketing strategy x is then,

g(x) =
∑
A⊆V

σ(A) ·
∏
u∈A

hu(x) ·
∏
v/∈A

(1− hv(x))
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Hill-Climbing Algorithm

To maximize g, we assume that we can evaluate the function at any
point x approximately, and find the direction i with approximately
maximal gradient

Let ei denote the unit vector along the ith direction and divide each
unit of total budget k into equal parts of size δ

Hill Climbing Algorithm

Algorithm 2 Hill Climbing Algorithm

1: Start with x(0) = 0
2: for all rounds t = 0, . . . , k · δ−1 do
3: Let it be the direction maximising g(x(t) + δ · ei)− g(x(t))
4: Set x(t+1) = x(t) + δ · ei
5: end for
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Hill-Climbing Algorithm

Theorem (Hill Climbing Algo Approximation)

When the hill-climbing algorithm finishes with strategy x, with
γ-approximate gradient values, it guarantees that

g(x) ≥
(

1− e
k·γ

k+δ·m

)
· g(x̂)

where, g(x) is non-negative, monotone, and satisfies “diminishing
returns”, and x̂ denotes the optimal solution subject to

∑
i x̂i ≤ k.
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Experiments and Results
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Experiments and Results - [Kempe et. al, 2003]

Co-authorship dataset – High-Energy Physics Theory (2002)

Edge e = (u, v) from author u to author v if they have co-authored a
paper

|V | = 10748, Edges between 53000 pair of nodes

Mulitple/parallel edges between 2 authors indicates strength of
relationship

u

v
8

7
Multiple 
Edges

u

v
8

7

4/8

4/7

Linear 
Threshold Model

1-(1-p)41-(1-p)4

u

v

Independent 
Cascade Model
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Results - LTM
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Results - ICM (p = 1%)
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Results - ICM (p = 10%)
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Questions?
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Thank You!
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Submodularity for LTM

Triggering Set Technique:

Let bv,w = 0 when w is not a neighbor of v

Suppose v picks at most one of its incoming edges at random with
probability bv,w selects no edge with probability 1−

∑
w bv,w

Selected edges are “Live Edges”, and other edges are “Blocked
Edges”
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Submodularity for LTM

Claim

For a given targeted set A, the following two distributions over sets of
nodes are the same

1 The distribution over active sets obtained by running the Linear
Threshold process to completion starting from A; and

2 The distribution over sets reachable from A via live-edge paths, under
the random selection of live edges defined above (Triggering set
technique)
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Submodularity for LTM

Proof: Part-I

Let At set of active nodes at the end of iteration t, for t = 0, 1, . . . ,
(A0 is the set initially targeted)

Probability that a node v becomes active at time t+ 1, given that it
has not become active till time t is:∑

u∈At\At−1
bv,u

1−
∑

u∈At−1
bv,u
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Submodularity for LTM

Proof: Part-II (live-edge paths)
Run the live-edge process as follows:

Start with targeted set A

For each node v, if v′s live edge is from A, v is reachable, else, keep
the source of v′s live edge unknown if not from A

Now, A′1 is the new set of reachable nodes. Continue in the similar
way to get the node sets A′2, A

′
3, . . .

If the node is not been reached by the end of stage t, then the
probability that it is reachable in stage t+ 1 is∑

u∈At\At−1
bv,u

1−
∑

u∈At−1
bv,u

Thus, the probability of a node being active is equal in both the cases
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Submodularity for LTM

Proving Submodularity:
Follows the similar proof as in case of Independent Cascade Model
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