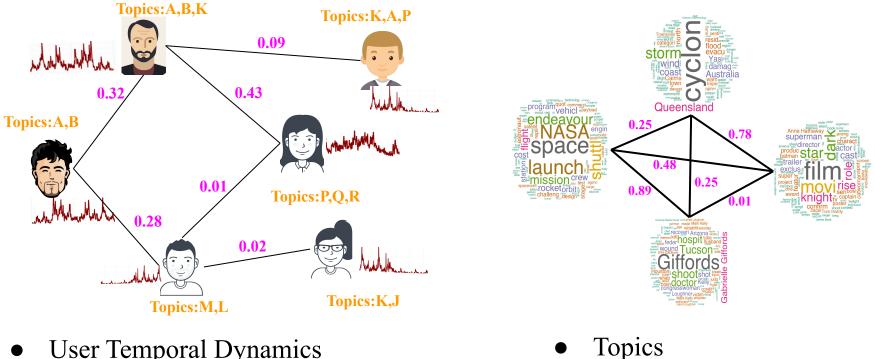
Discovering Topical Interactions in Text-based Cascades using Hidden Markov Hawkes Process

Srikanta Bedathur (IIT Delhi), Indrajit Bhattacharya (TCS Research), Jayesh Choudhari, Anirban Dasgupta (IIT Gandhinagar)

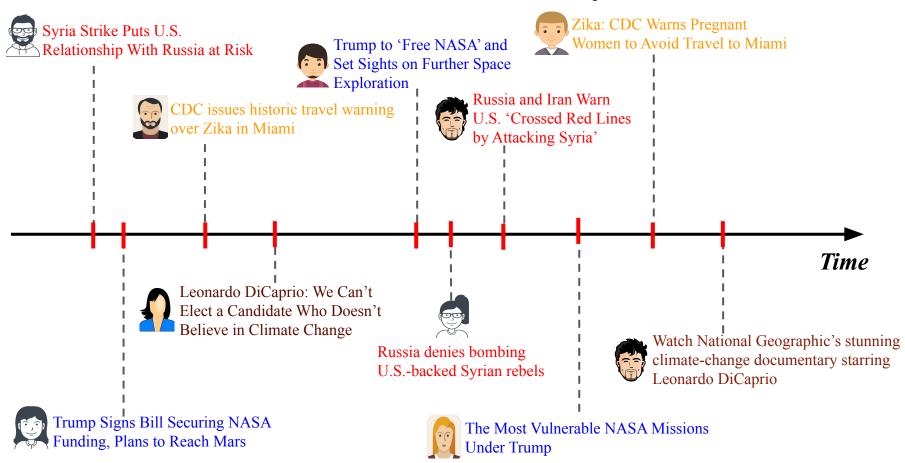
Motivation



- User Temporal Dynamics
- Preferred topics of each user
- Network Strengths (user-user influence)

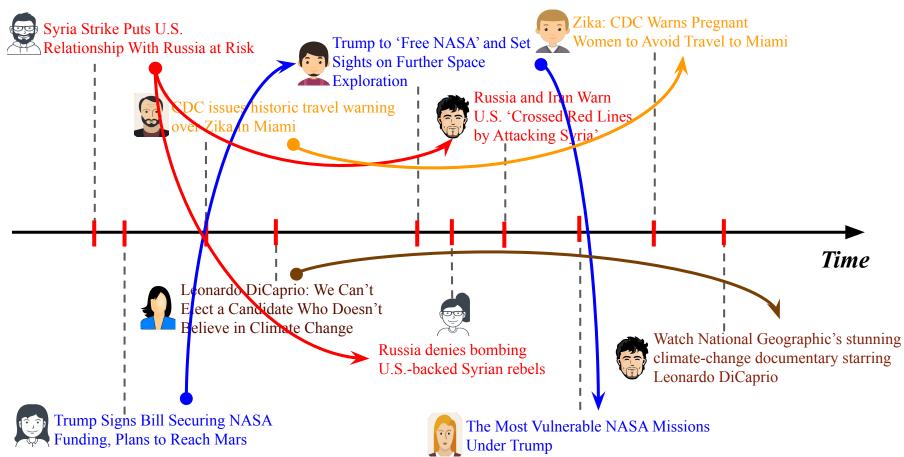
Topical Interactions

Data: Network + Time-series of Tweets



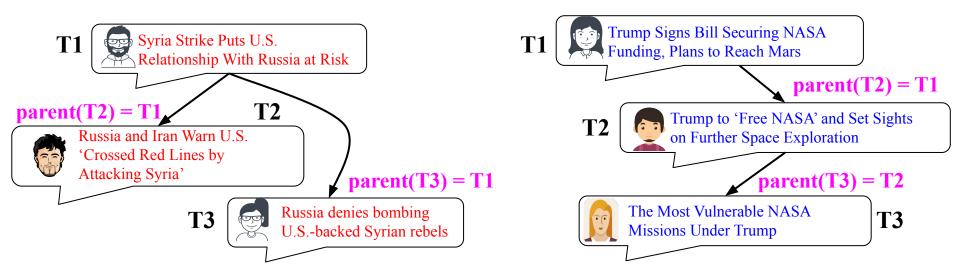
Jayesh Choudhari

Mixture of Conversations



Jayesh Choudhari

Cascades (Separate Conversations)



Separate these conversations out!!!

Jayesh Choudhari

Hidden Markov Hawkes Process

- Coupling of Network (Multivariate) Hawkes Process and the Markov Chain over topics.
- Coupled inference: Collapsed Gibbs sampling

Why Topical Interactions?

Parent-Child tweet pair

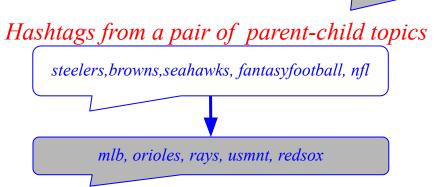
Gellman: My definition of whistleblowing: are you shedding light on crucial decision that society should be making for itself. #snowden

Gellman we are living inside a one way mirror, they & big corporations know more and more about us and we know less about them #sxsw

Hashtags from top-3 transitioned topics

agentsofshield, arrow, tvtag, supernatural, chicagoland

Topic-1: idol, bbcan2, havesandhavenots, thegamebet Topic-2: tvtag, houseofcards, agentsofshield, arrow, Topic-3: soundcloud, hiphop, mastermind, nowplaying



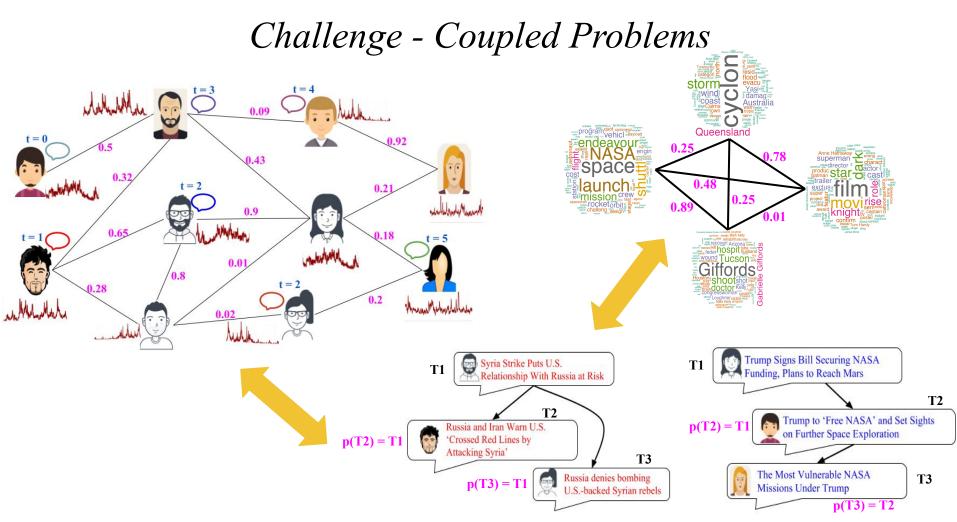
Jayesh Choudhari

HMHP Generative Process

- 1) Generate (t_e, c_e, z_e) for all events according Multivariate Hawkes Process. Temporal Dynamics and
- 2) For each topic k: sample $\zeta_k \sim Dir_{\mathcal{W}}(\alpha)$ Network Inference using
- 3) For each topic k: sample $\mathcal{T}_k \sim Dir_K(\beta)$ Multivariate Hawkes Process
- For each node v: sample $\phi_v \sim Dir_K(\gamma)$
- 5) For each event e at node $c_e = v$:
 - Cascade reconstruction and Topical Interactions coupling a) i) if $z_e = 0$ (level 0 event): draw a topic $\eta_e \sim Discrete_K(\phi_v)$ Multivariate Hawkes Process and Topical Markov Chains ii) else:

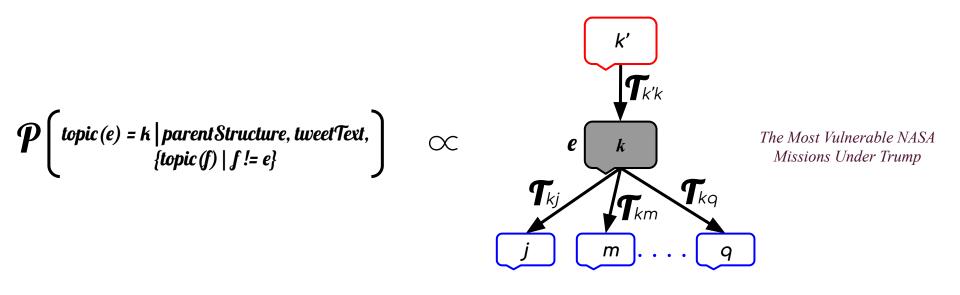
draw a topic $\eta_e \sim Discrete_K(\boldsymbol{\mathcal{T}}_{\eta_{z_o}})$ Topic Model b) Sample document length $N_e \sim Poisson(\lambda)$ c) For $w = 1 \dots N_e$: draw word $x_{e,w} \sim Discrete_{\mathcal{W}}(\boldsymbol{\zeta}_{n_e})$

Inference



Jayesh Choudhari

Topic Inference

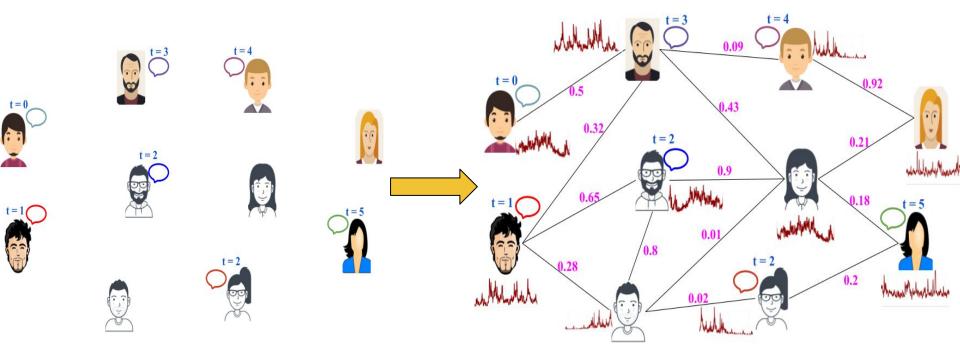


Cascade Inference

$$\mathcal{P}(par(e) = f | Topics, W, \mu, timeStamps) \propto \begin{cases} k' \\ \downarrow T_{k'k} \\ e \\ k \end{cases} * \bigvee_{uv} * \downarrow_{uv} * \downarrow_{uv} \end{cases}$$

Existing Models

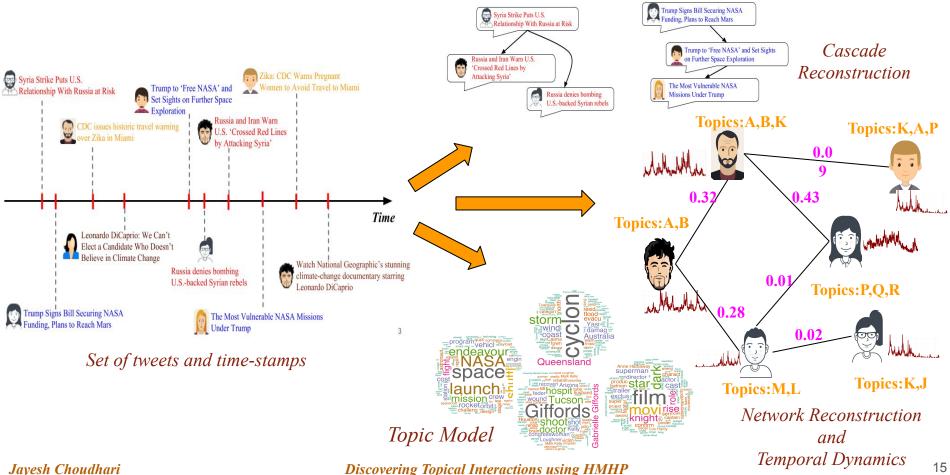
Network Hawkes Model



Does not model (textual) content of events / tweets

Jayesh Choudhari

Hawkes Topic Model (HTM) [He et al. '15]



Missing Topical Interactions in HTM

[#MASalert] Statement By Our Group CEO, Ahmad Jauhari Yahya on MH370 Incident. Released at 9.05am/8 Mar 2014

Missing #MalaysiaAirlines flight carrying 227 passengers (including 2 infants) of 13 nationalities and 12 crew members.

Repeating patterns in the topics of the parent and child events

Generation of Topic of child event in HTM

If event **e** is not spontaneous, then **Topic (e)** ~ **Normal (Topic (parent (e))**, $\sigma^2 I$)

v/s

Generation of Topic of child event in HMHP

If event e is not spontaneous, then **Topic (e)** ~ ζ (**Topic (parent (e))**)

where, **ζ** is Topical Interaction Distribution

Note: These parent-child pairs are neither retweets nor does twitter provide any signal to know any relation about these pairs

Jayesh Choudhari

Results

Datasets

Twitter (Real Data):

- 500K tweets corresponding to top 5K hashtags from the most prolific 1M users generated in a contiguous part of March 2014

Semi-Synthetic:

- Retain the underlying set of nodes and the follower graph from a sample of Twitter Data.
- Estimate the parameters required for our model from the data.
- Generate 5 different samples of 1M events using HMHP model.

Baselines

- HWK + DIAG:
 - Simplified HMHP with diagonal topical interactions
- HWK x LDA:
 - Network Hawkes model for cascade structure and time-stamps
 - LDA mixture model for the textual content

• HTM (Hawkes Topic Model)

Reconstruction Accuracy (Semi-Synthetic Dataset)

	НМНР	HWK+Diag	<i>HWK×LDA</i>	Network Reconstruction Error			
Mean APE	0.448	0.565	0.552	Mean Error :- ~18% lower			
Median APE	0.255	0.283	0.287	<i>Median Error :- ~10% lower</i>			
	HMHP	HWK+Diag	HWK×LDA				
Accuracy	0.581	0.362	0.37	Cascade Reconstruction Accuracy			
Recall@1	0.595	0.373	0.38	Acc/Recall@1 :- ~57% better Recall@3 :- ~32% better			
Recall@3	0.778	0.584	0.589				
Topic	НМНР	HWK+Diag	<i>HWK×LDA</i>				
Precision	0.893	0.123	0.781	Topic Identification			
Recall	0.746	0.367	0.752	HMHP performs ~5-6% better			
F1	0.811	0.18	0.765				

Generalization Performance (Twitter Dataset)

Heldout Log-Likelihood

#Topics	Log-Likelihood	НМНР	HWK + Diag	HWK x LDA
25	Content	-30499278	-33356945	-30532938
	Time	-4236958	-4042903	-4299630
	Total	-34736237	-37399849	-34832568
50	Content	-30141081	-33427354	-30089733
	Time	-4288438	-4510072	-4343571
	Total	-34429519	-37937426	-34433305
75	Content	-29860909	-33433922	-29861050
	Time	-4285293	-4510535	-4373736
	Total	-34146202	-37944457	-34234787

HMHP performs ~5% *better than the baselines*

Jayesh Choudhari

Comparison with HTM [He et al. '15]

Synthetic events generated using HMHP model

Window Length	1000	2000	3000	4000	5000
HTM	2.811	1.982	1.464	1.292	1.351
HMHP	1.297	0.925	0.677	0.646	0.657

Network Inference (TAE) (lower the better)

Window Length	1000	2000	3000	4000	5000
HTM	0.681	0.687	0.712	0.716	0.708
HMHP	0.926	0.924	0.95	0.94	0.935

Parent Identification (Accuracy) (higher the better)

Comparison with HTM [He et al. '15]

Synthetic events (short documents) generated using HTM model

Window Length	1000	2000	3000	4000	5000
HTM	3.167	2.377	2.014	1.964	1.519
HMHP	1.696	1.200	1.168	1.396	1.243

Network Inference (TAE) (lower the better)

Window Length	1000	2000	3000	4000	5000
HTM	0.575	0.588	0.61	0.618	0.628
HMHP	0.716	0.730	0.736	0.730	0.748

Parent Identification (Accuracy) (higher the better)

Generative Model

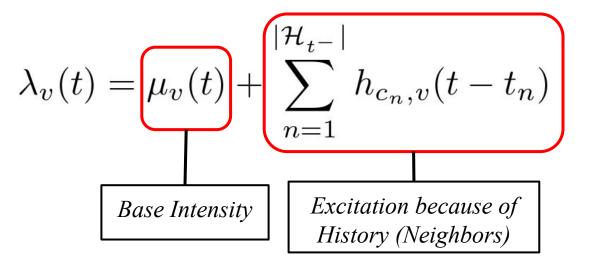
What all to model?

- Temporal Dynamics for each user
- User Network Strengths
- Topics
- Topical Interactions
- Topic preference for each user

Modeling Time + *Network: Hawkes Process*

$$\lambda_v(t) = \mu_v(t) + \sum_{n=1}^{|\mathcal{H}_{t^-}|} h_{c_n,v}(t-t_n)$$

Modeling Time + Network: Multivariate Hawkes Process



$$h_{u,v}(\Delta t) = W_{u,v}f(\Delta t)$$

Jayesh Choudhari

Level wise event generation [A. Simma 2010]

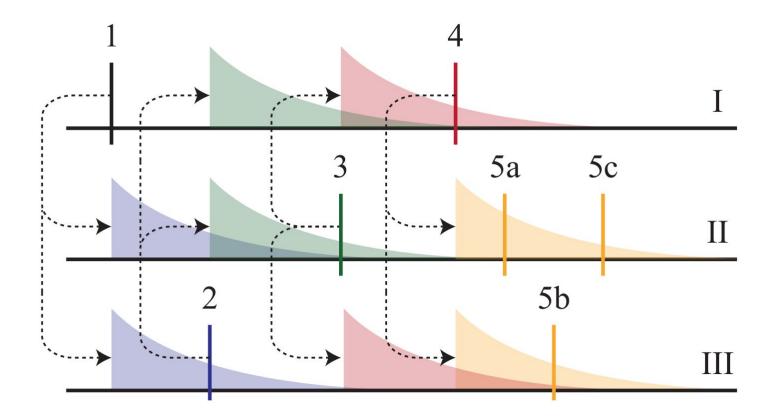
- Draw (spontaneous) events for each user with the base intensity -- (Level-0 events).
- Subsequent events are drawn using the following non-homogenous Poisson process

$$\Pi_l \sim Poisson\left(\sum_{(t_n, c_n, z_n) \in \Pi_{l-1}} h_{c_n, \cdot}(t, t_n)\right)$$

Level-i event can be anywhere on the timeline, it's just that the timestamps of level-i events is greater than the timestamps of level-(i-1) events

Jayesh Choudhari

Modeling Time + Network: Multivariate Hawkes Process

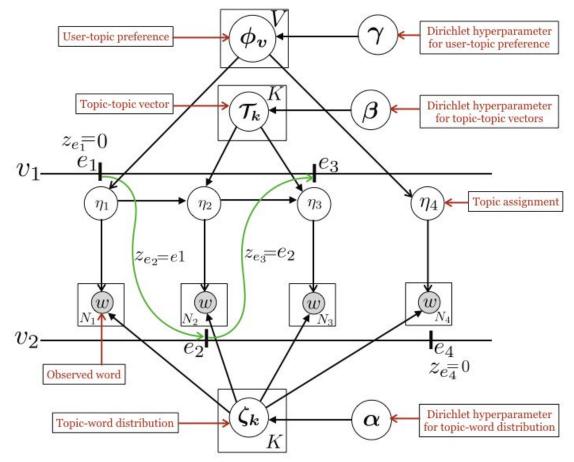


HMHP Generative Process

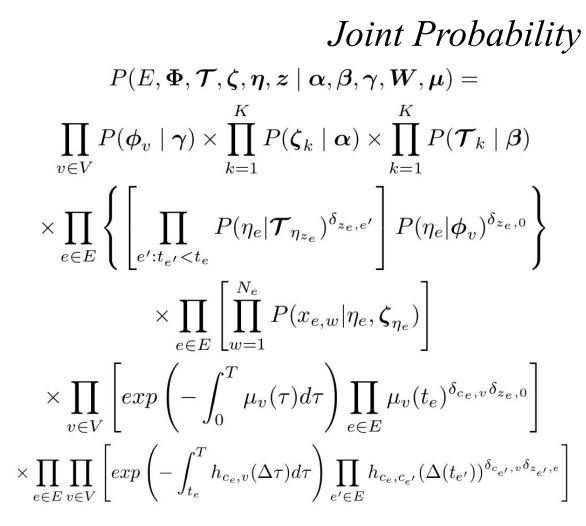
- 1) Generate (t_e, c_e, z_e) for all events according Multivariate Hawkes Process. Temporal Dynamics and
- 2) For each topic k: sample $\zeta_k \sim Dir_{\mathcal{W}}(\alpha)$ Network Inference using
- 3) For each topic k: sample $\mathcal{T}_k \sim Dir_K(\beta)$ Multivariate Hawkes Process
- For each node v: sample $\phi_v \sim Dir_K(\gamma)$
- 5) For each event e at node $c_e = v$:
 - Cascade reconstruction and Topical Interactions coupling a) i) if $z_e = 0$ (level 0 event): draw a topic $\eta_e \sim Discrete_K(\phi_v)$ Multivariate Hawkes Process and Topical Markov Chains ii) else:

draw a topic $\eta_e \sim Discrete_K(\boldsymbol{\mathcal{T}}_{\eta_{z_o}})$ Topic Model b) Sample document length $N_e \sim Poisson(\lambda)$ c) For $w = 1 \dots N_e$: draw word $x_{e,w} \sim Discrete_{\mathcal{W}}(\boldsymbol{\zeta}_{n_e})$

Generative Model



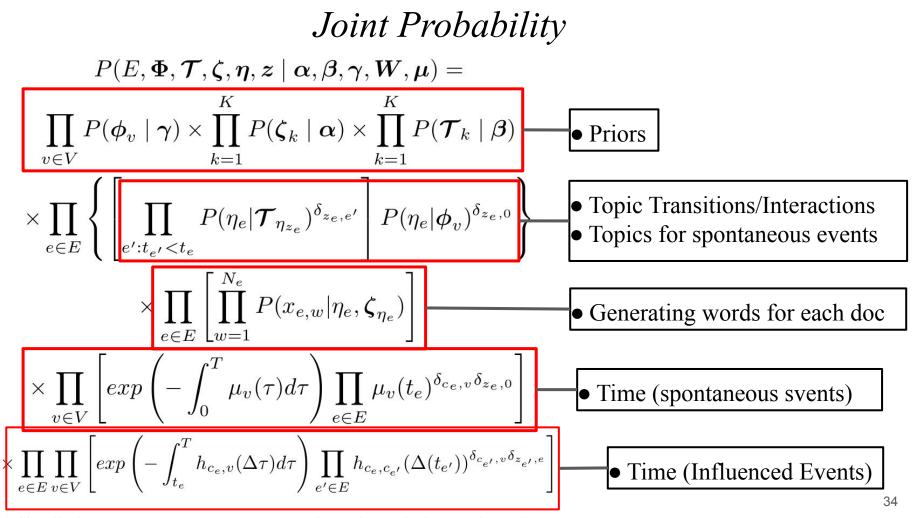
Inference



Jayesh Choudhari

Discovering Topical Interactions using HMHP

33



Jayesh Choudhari

Topic Inference

$$\mathcal{P} \left(\underset{\{\text{topic}(e) = k \mid \text{parent Structure, tweetText,}}{[\text{topic}(f) \mid f != e]} \right) \propto \frac{\beta_k + N_{k',k}^{(\neg(z_e,e))}}{(\sum_l \beta_l) + N_{k'}^{(\neg(z_e,e))}} \times \frac{\prod_{w \in d_e} \prod_{i=0}^{N_e^w - 1} (\alpha_w + \mathfrak{T}_{k,w}^{\neg e} + i)}{\prod_{i=0}^{N_e - 1} ((\sum_{w \in \mathcal{W}} \alpha_w) + \mathfrak{T}_k^{\neg e} + i)} \times \frac{\prod_{i=0}^{K} \prod_{i=0}^{N_e^{(i)} - 1} (\beta_{l'} + N_{k,l'}^{(\neg C_e)} + i)}{\prod_{i=0}^{N_k^{(C_e)} - 1} ((\sum_{l'} \beta_{l'}) + N_k^{\neg C_e} + i)} \right)$$

Topic Inference

$$\mathcal{P}\left(topic(e) = k \mid parent \& tructure, tweet Text, \\ [topic(f) \mid f!= e] \right) \propto \frac{\beta_k + N_{k',k}^{(\neg(z_e,e))}}{(\sum_l \beta_l) + N_{k'}^{(\neg(z_e,e))}} \times \frac{\prod_{w \in d_e} \prod_{i=0}^{N_e^w - 1} (\alpha_w + \mathfrak{T}_{k,w}^{\neg e} + i)}{\prod_{i=0}^{K} \prod_{i=0}^{N_e^{-1}} (\sum_{w \in W} \alpha_w) + \mathfrak{T}_{k}^{\neg e} + i)} \times \frac{\prod_{i=0}^{K} \prod_{i=0}^{N_e^{-1} - 1} (\beta_{l'} + N_{k,l'}^{(\neg c_e)} + i)}{\prod_{i=0}^{N_e^{(e)} - 1} ((\sum_{l'} \beta_{l'}) + N_{k'}^{\neg c_e} + i)}$$

$$\mathcal{P}\left(topic(e) = k \mid parent \& tructure, tweet Text, \\ [topic(f) \mid f!= e] \right) \propto \frac{e^{k} \prod_{i=0}^{K} \prod_{i=0}^{N_e^{(i)} - 1} (p_{i'} + N_{k,l'}^{(\neg c_e)} + i)}{\prod_{i=0}^{N_e^{(e)} - 1} (\sum_{l'} \beta_{l'}) + N_{k'}^{\neg c_e} + i)}$$

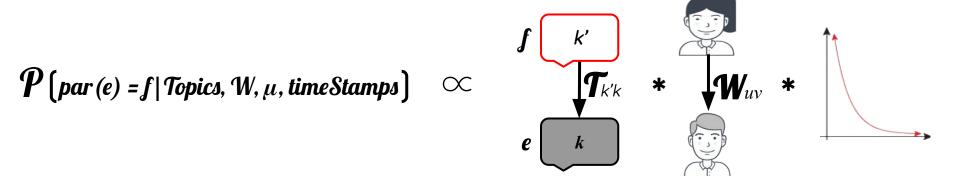
Jayesh Choudhari

Cascade Inference

$$\mathbf{P}[par(e) = f | Topics, W, \mu, timeStamps] \propto \frac{(\beta_k + N_{k',k} - 1)}{((\sum_{k=1}^K \beta_k) + N_{k'} - 1)} \times h_{u_{e'}, u_e}(t_e - t_{e'})$$

Cascade Inference

$$\mathcal{P}$$
 (par (e) = f | Topics, W, μ , timeStamps) $\propto \frac{(\beta_k + N_{k',k} - 1)}{((\sum_{k=1}^K \beta_k) + N_{k'} - 1)} imes h_{u_{e'},u_e}(t_e - t_{e'})$



Network Inference

$$P(W_{u,v} = x \mid E_t^{(u,v)}, \boldsymbol{z}) \propto x^{\alpha_1} \exp(-x\beta_1)$$

where,

$$\alpha_1 = (N_{u,v} + \alpha - 1)$$

$$\beta_1 = (N_u + \frac{1}{\beta})^{-1}$$

Summary

- Generative model for textual time-series from user networks having topical interactions
- Couples Topical Markov Chains and Multivariate Hawkes Processes
- Scalable collectively inference using collapsed Gibbs Sampling
- More accurate cascade reconstruction, topic identification and network reconstruction and better generalization for test data
- Derive insights about topical interactions that the existing models cannot

Knowledge in HMHP

Topical Structure

Tonight, we heard from two candidates -- but only one president. **#ImWithHer**

8:13 AM - 27 Sep 2016

"Hillary won big time. It was a shut out." --@HardballChris #debatenight

8:14 AM - 27 Sep 2016

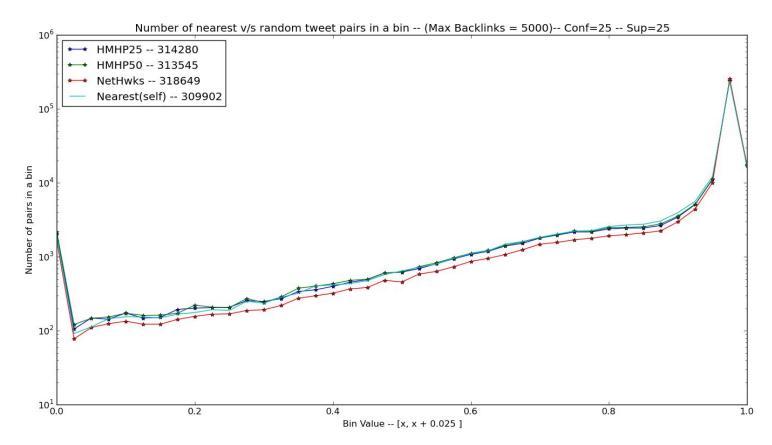
4,313 Retweets 12,374 Likes

Jayesh Choudhari

Topical Structure

Entities in parent-child tweet pairs are "closer" on Wiki?

Jaccard Distance between Parent-Child Tweets

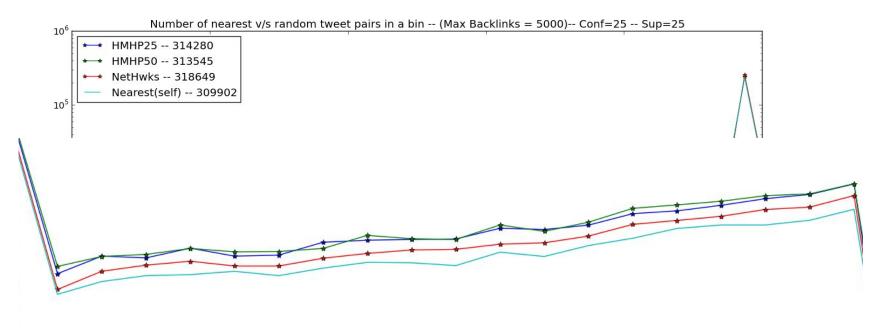


Note: Annotation is done using DBPedia Spotlight Discovering Topical Interactions using HMHP

Jayesh Choudhari

45

Jaccard Distance between Parent-Child Tweets

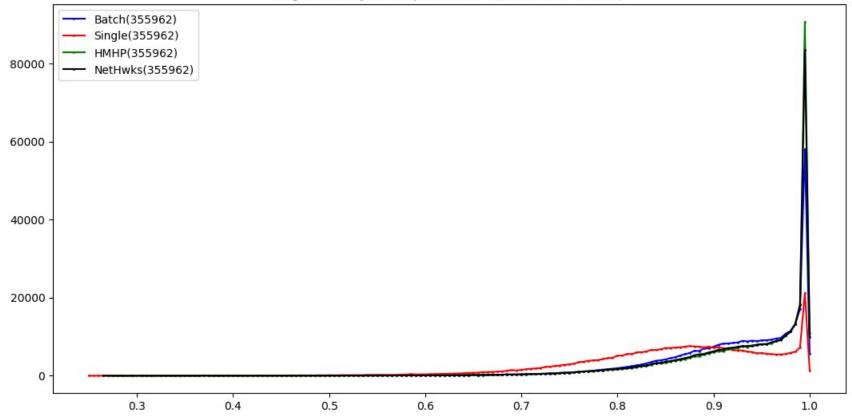


Bin Value -- [x, x + 0.025]

Better Cascades Better Annotation?

Avg. Similarity Score for Cascades

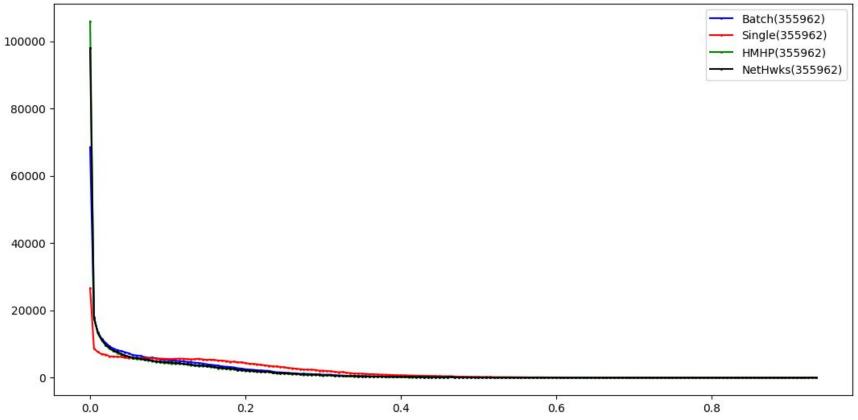
Avg Similarity Score per tweet -- (BinWidth = 0.005)



Jayesh Choudhari

Avg. Percentage Second Rank for Cascades

Avg Perc Second Rank per tweet -- (BinWidth = 0.005)



Jayesh Choudhari

Coupling Cascades and Entity Identification

- Better parent-child identification (cascade construction) can help in better annotation (entity identification)
- Better annotation can help in better parent-child identification (cascade construction)?

<u>Goal</u>

A Generative model for textual time-series data from user networks having topical interactions along with structure among topics

Thank You

Jayesh Choudhari