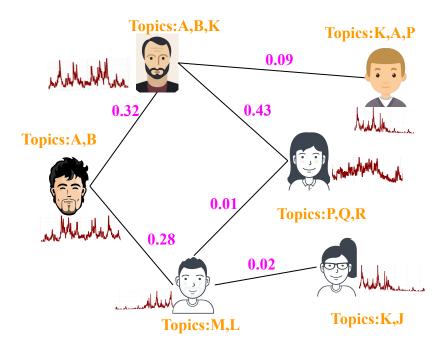
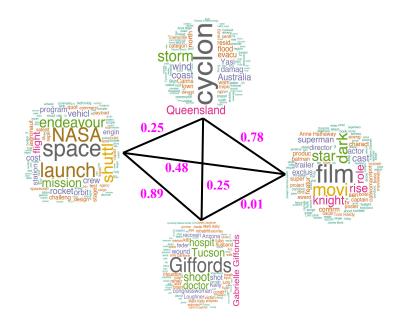
Discovering Topical Interactions in Text-based Cascades using Hidden Markov Hawkes Process

Srikanta Bedathur (IIT Delhi), Indrajit Bhattacharya (TCS Research), **Jayesh Choudhari**, Anirban Dasgupta (IIT Gandhinagar)

Motivation

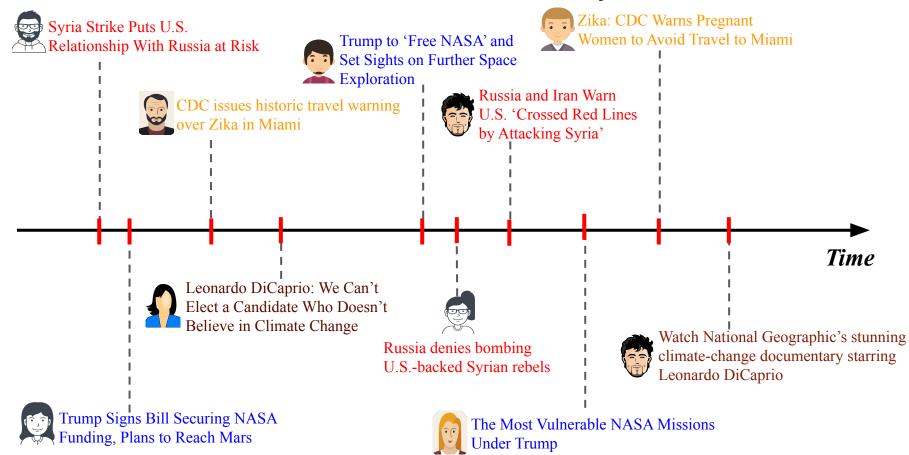


- User Temporal Dynamics
- Preferred topics of each user
- Network Strengths (user-user influence)

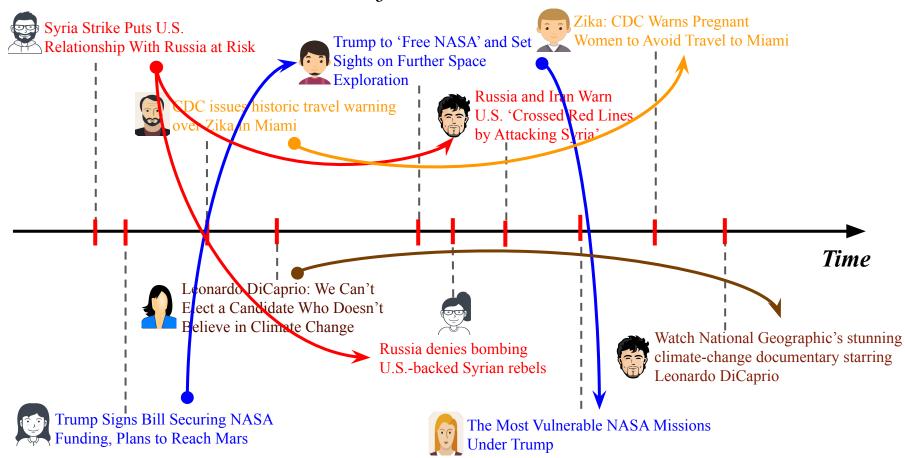


- Topics
- Topical Interactions

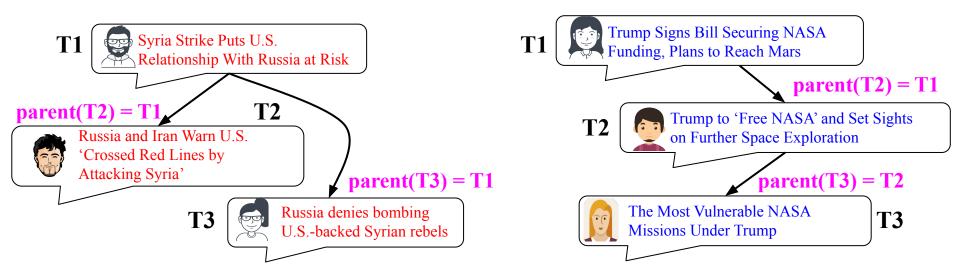
Data: Network + Time-series of Tweets



Mixture of Conversations



Cascades (Separate Conversations)

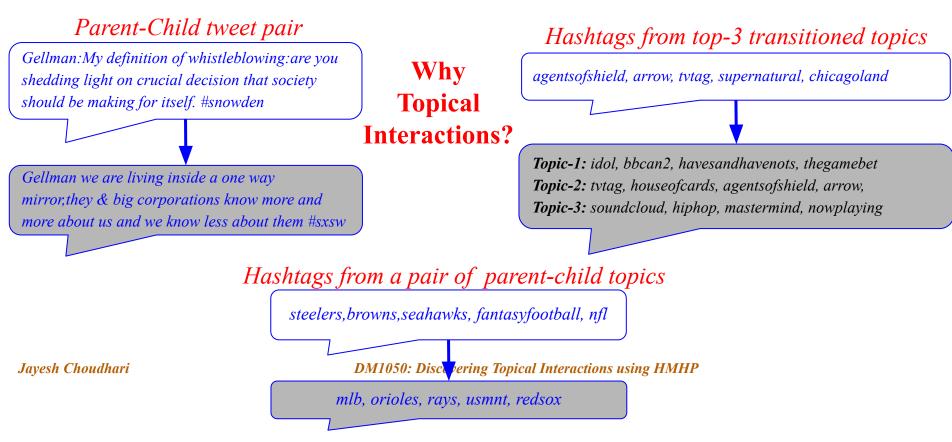


Just separate this conversations out!!!

Hidden Markov Hawkes Process

- Coupling of Network (Multivariate) Hawkes Process and the Markov Chain over topics.
- Coupled inference: Collapsed Gibbs sampling

Snapshot of Results



Generative Model

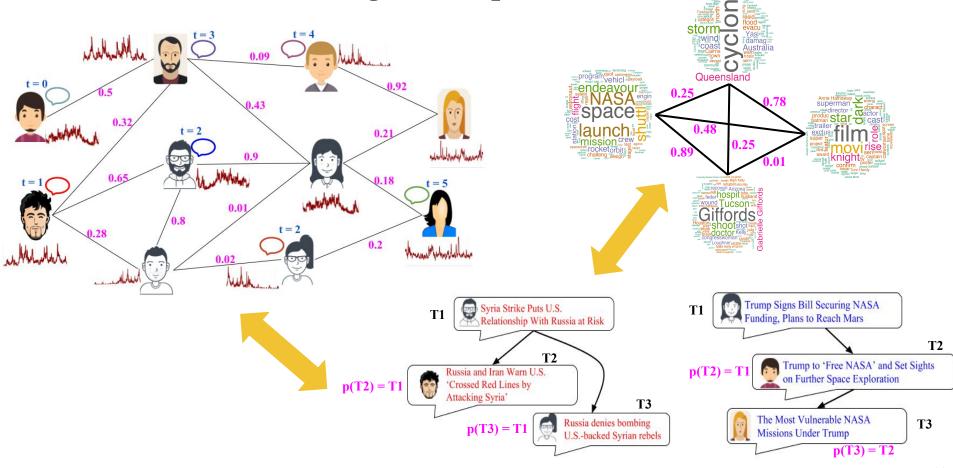
HMHP Generative Process

- 1) Generate (t_e, c_e, z_e) for all events according Multivariate Hawkes Process. Temporal Dynamics
- and 2) For each topic k: sample $\zeta_k \sim Dir_{\mathcal{W}}(\boldsymbol{\alpha})$ | Network | Inference 3) For each topic k: sample $\mathcal{T}_k \sim Dir_K(\beta)$ Multivariate Hawkes Process
 - For each node v: sample $\phi_v \sim Dir_K(\gamma)$
- 5) For each event e at node $c_e = v$: Cascade reconstruction and a) i) if $z_e = 0$ (level 0 event): Topical Interactions coupling
 - draw a topic $\eta_e \sim Discrete_K(\boldsymbol{\phi}_v)$ Multivariate Hawkes Process and Topical Markov Chains ii) else:

draw a topic $\eta_e \sim Discrete_K(\mathcal{T}_{\eta_{z_s}})$ Topic Model b) Sample document length $N_e \sim Poisson(\lambda)$ c) For $w = 1 \dots N_e$: draw word $x_{e,w} \sim Discrete_{\mathcal{W}}(\zeta_{n_e})$

Inference

Challenge - Coupled Problems



Cascade Inference

$$P(par(e) = f | Topics, W, \mu, timeStamps) \propto \begin{cases} f & k' \\ e & k \end{cases} * W_{uv} *$$

Topic Inference

$$P(topic(e) = k | parentStructure, tweetText, \{topic(f) | f!= e\}) \propto e^{k'}$$

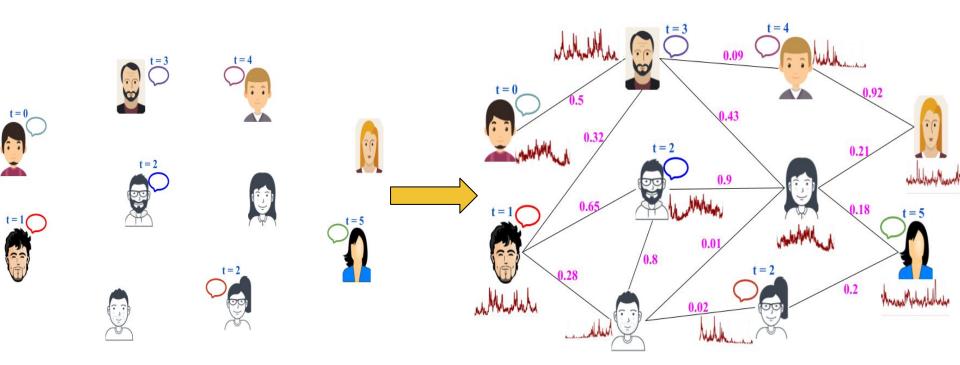
$$The Most Vulnerable NASA Missions Under Trump$$

$$j \qquad m \qquad q$$

Note: Topical Interactions are inferred using the sampled topics and the parent-child structure

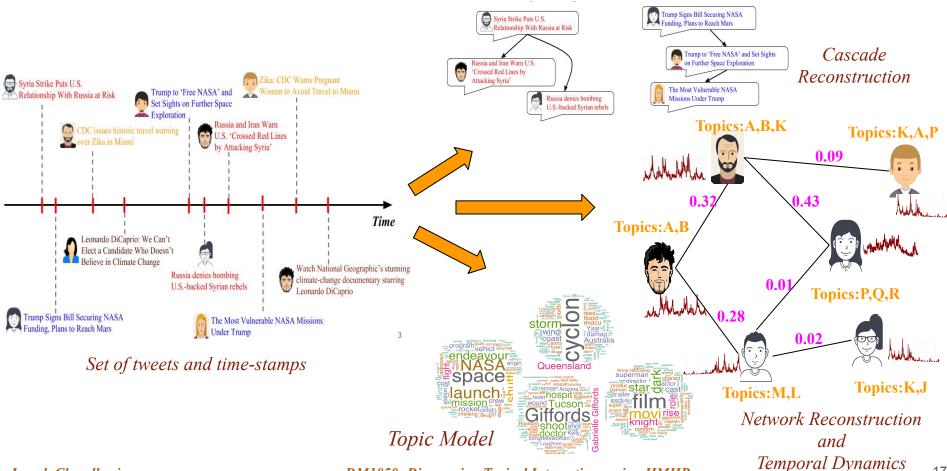
Existing Models

Network Hawkes Model



Does not model (textual) content of events / tweets

Hawkes Topic Model [He et al. '15]



Missing Topical Interactions in HTM

[#MASalert] Statement By Our Group CEO, Ahmad Jauhari Yahya on MH370 Incident. Released at 9.05am/8 Mar 2014

Missing #MalaysiaAirlines flight carrying 227 passengers (including 2 infants) of 13 nationalities and 12 crew members.

Repeating patterns in the topics of the parent and child events

Generation of Topic of child event in HTM

If event e is not spontaneous, then **Topic** (e) ~ Normal (Topic (parent (e)), $\sigma^2 I$)

V/S

Generation of Topic of child event in HMHP

If event e is not spontaneous, then **Topic** $(e) \sim \zeta$ (**Topic** (parent(e)))

where, **\(\zeta** is Topical Interaction Distribution

Note: These parent-child pairs are neither retweets nor does twitter provide any signal to know any relation about these pairs

Results

Datasets

Twitter (Real Data):

- **500K** tweets corresponding to top 5K hashtags from the most prolific 1M users generated in a contiguous part of March 2014

Semi-Synthetic:

- Retain the underlying set of nodes and the follower graph from a sample of Twitter Data.
- Estimate the parameters required for our model from the data.
- Generate 5 different samples of 1M events using HMHP model.

Baselines

- HWK + DIAG:
 - Simplified HMHP with diagonal topical interactions
- HWK x LDA:
 - Network Hawkes model for cascade structure and time-stamps
 - LDA mixture model for the textual content

• HTM (Hawkes Topic Model)

Reconstruction Accuracy (Semi-Synthetic Dataset)

	НМНР	HWK+Diag	<i>HWK×LDA</i>
Mean APE	0.448	0.565	0.552
Median APE	0.255	0.283	0.287
	-		

Network Reconstruction Error

Mean Error :- ~18% lower Median Error :- ~10% lower

	НМНР	HWK+Diag	HWK×LDA
Accuracy	0.581	0.362	0.37
Recall@1	0.595	0.373	0.38
Recall@3	0. 778	0.584	0.589

Cascade Reconstruction Accuracy

Acc/Recall@1:- ~57% betterRecall@3:- ~32% better

Topic HMHP HWK+Diag **HWK×LDA** 0.893 0.1230.781 Precision 0.746 Recall 0.3670.7520.811 F10.180.765

Topic Identification

HMHP performs ~5-6% better

Generalization Performance (Twitter Dataset)

Heldout Log-Likelihood

#Topics	Log-Likelihood	НМНР	HWK + Diag	HWK x LDA
25	Content	-30499278	-33356945	-30532938
	Time	-4236958	-4042903	-4299630
	Total	-34736237	-37399849	-34832568
50	Content	-30141081	-33427354	-30089733
	Time	-4288438	-4510072	-4343571
	Total	-34429519	-37937426	-34433305
75	Content	-29860909	-33433922	-29861050
	Time	-4285293	-4510535	-4373736
	Total	-34146202	-37944457	-34234787

HMHP performs ~5% better than the baselines

Summary

- Generative model for textual time-series from user networks having topical interactions
- Couples Topical Markov Chains and Multivariate Hawkes Processes
- Scalable collectively inference using collapsed Gibbs Sampling
- More accurate cascade reconstruction, topic identification and network reconstruction and better generalization for test data
- Derive insights about topical interactions that the existing models cannot

Thank You