Information Diffusion in Social Networks

Cascades are formed when people (re)share information with one another

Barack Obama 🥝 @BarackObama

Four more years.

9:46 AM - 7 Nov 2012

J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? In WWW '14, 2014.

Cascades in Blogosphere

Network of posts in the Blogosphere

J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M.Hurst. Cascading behavior in large blog graphs. In Proc. ICDM, 2007

Common Cascade Shapes

Common Cascade shapes ordered by the frequency

Cascade Size Distribution

How many exposures do you need...?

Romero, D. M.; Meeder, B.; and Kleinberg, J. 2011. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. WWW11

Example: Exposure v/s Adoption

Romero, D. M.; Meeder, B.; and Kleinberg, J. 2011. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. WWW11

"Complex Contagion" phenomena

Romero, D. M.; Meeder, B.; and Kleinberg, J. 2011. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. WWW11

Adoption of politically controversial hashtags are affected by multiple exposures, while repeated exposures have less effect on adoption of conversational idioms...

Can cascades be predicted ... ??

Change in frequency of hashtags with time

J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M.Hurst. Cascading behavior in large blog graphs. In Proc. ICDM, 2007

Will cascade reach median size?

less than the median f(k)

more than the median f(k)

J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? In WWW '14, 2014.

What factors affect predictability??

e.g. +ve or -ve emotion

e.g. time between re-shares

e.g. weiner index

User

e.g.topicality of user

Which features perform better for prediction task??

J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? In WWW '14, 2014.

How does the performance change with k...???

Can we come up with a model for cascade prediction??

- 1. Uniformly at random pick a blog u, mark it as infected and add to the cascade graph
- 2. Infect each of its directed neighbours with probability β
- 3. Add the newly infected nodes $\{v_1, v_2, \ldots, v_n\}$ to the cascade
- 4. Set the state of node u as not infected or susceptible. Continue recursively from step 2, until no nodes are infected.

Top 10 most frequent cascades generated by Cascade Generation Model

A Self Excitation Model for Information Cascades

Goal Given tweet and retweets upto time "T", can we predict its final popularity...?

Defining Intensity for SEISMIC

Poisson Process: $\lambda_t = \lambda$

Infectiousness: "probability" of retweeting

 $\lambda_t = p_t \sum_{t_i \le t} n_i \phi(t)$

"Rate of viewing"

(Intensity of arrival of new newly exposed nodes)

Intuition for Infectiousness

$$\hat{p}_t = \frac{\text{Number of Retweets}}{\text{Number of views}}$$

Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec. Seismic: A self-exciting point process model for predicting tweet popularity. KDD'15

Predicting final popularity

Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec. Seismic: A self-exciting point process model for predicting tweet popularity. KDD'15

Prediction by SEISMIC

Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec. Seismic: A self-exciting point process model for predicting tweet popularity. KDD'15

Other Similar Problems!!!

Influence Maximization

References

J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M.Hurst. Cascading behavior in large blog graphs. In Proc. ICDM, 2007

H.W. Shen, D. Wang, C. Song, and A.-L. Barabási. Modeling and predicting popularity dynamics via reinforced poisson processes. arXiv:1401.0778, 2014.

J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? In WWW '14, 2014.

Romero, D. M.; Meeder, B.; and Kleinberg, J. 2011. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proceedings of the 20th international conference on World wide web, WWW '11, 695–704. New York, NY, USA:ACM.

Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec. Seismic: A self-exciting point process model for predicting tweet popularity. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '15, pages 1513–1522, 2015.

