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Figure 1: The model of the blogosphere (a). Squares represent blogs and circles blog-posts. Each post belongs to
a blog, and can contain hyper-links to other posts and resources on the web. We create two networks: a weighted
blog network (b) and a post network (c). Nodes a, b, c, d are cascade initiators, and node e is a connector.

opinion forums that are not possible in the mass media.
Also, blogs and posts typically link each other, as well
as other resources on the Web. Thus, blogs have become
an important means of transmitting information. The
influence of blogs was particularly relevant in the 2004
U.S. election, as they became sources for campaign
fundraising as well as an important supplement to
the mainstream media [1]. The blogosphere has
continued to expand its influence, so understanding
the ways in which information is transmitted among
blogs is important to developing concepts of present-
day communication.

We model two graph structures emergent from links
in the blogosphere, which we call the Blog network and
the Post network. Figure 1 illustrates these structures.
Blogosphere is composed of blogs, which are further
composed of posts. Posts then contain links to other
posts and resources on the web.

From Blogosphere (a), we obtain the Blog network
(b) by collapsing all links between blog posts into
weighted edges between blogs. A directed blog-to-
blog edge is weighted with the total number of links
occurring between posts in source blog pointing to posts
in destination blog. From the Blog network we can infer
a social network structure, under the assumption that
blogs that are “friends” link each other often.

In contrast, to obtain the Post network (c), we
ignore the posts’ parent blogs and focus on the link
structure. Associated with each post is also the time
of the post, so we label the edges in Post network
with the time difference ∆ between the source and the
destination posts. Let tu and tv denote post times of
posts u and v, where u links to v, then the link time
∆ = tu − tv. Note ∆ > 0, since a post can not link into
the future and there are no self-edges.

From the Post network, we extract information cas-
cades, which are induced subgraphs by edges represent-
ing the flow of information. A cascade (also known as
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Figure 2: Cascades extracted from Figure 1. Cascades
represent the flow of information through nodes in the
network. To extract a cascade we begin with an initiator
with no out-links to other posts, then add nodes with
edges linking to the initiator, and subsequently nodes
that link to any other nodes in the cascade.

conversation tree) has a single starting post called the
cascade initiator with no out-links to other posts (e.g.
nodes a, b, c, d in Figure 1(c)). Posts then join the cas-
cade by linking to the initiator, and subsequently new
posts join by linking to members within the cascade,
where the links obey time order (∆ > 0). Figure 2 gives
a list of cascades extracted from Post network in Fig-
ure 1(c). Since a link points from the follow-up post to
the existing (older) post, influence propagates following
the reverse direction of the edges.

We also define a non-trivial cascade to be a cascade
containing at least two posts, and therefore a trivial
cascade is an isolated post. Figure 2 shows all non-
trivial cascades in Figure 1(c), but not the two trivial
cascades. Cascades form two main shapes, which we
will refer to as stars and chains. A star occurs when
a single center posts is linked by several other posts,
but the links do not propagate further. This produces a
wide, shallow tree. Conversely, a chain occurs when
a root is linked by a single post, which in turn is
linked by another post. This creates a deep tree
that has little breadth. As we will later see most
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continued to expand its influence, so understanding
the ways in which information is transmitted among
blogs is important to developing concepts of present-
day communication.

We model two graph structures emergent from links
in the blogosphere, which we call the Blog network and
the Post network. Figure 1 illustrates these structures.
Blogosphere is composed of blogs, which are further
composed of posts. Posts then contain links to other
posts and resources on the web.

From Blogosphere (a), we obtain the Blog network
(b) by collapsing all links between blog posts into
weighted edges between blogs. A directed blog-to-
blog edge is weighted with the total number of links
occurring between posts in source blog pointing to posts
in destination blog. From the Blog network we can infer
a social network structure, under the assumption that
blogs that are “friends” link each other often.

In contrast, to obtain the Post network (c), we
ignore the posts’ parent blogs and focus on the link
structure. Associated with each post is also the time
of the post, so we label the edges in Post network
with the time difference ∆ between the source and the
destination posts. Let tu and tv denote post times of
posts u and v, where u links to v, then the link time
∆ = tu − tv. Note ∆ > 0, since a post can not link into
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with no out-links to other posts, then add nodes with
edges linking to the initiator, and subsequently nodes
that link to any other nodes in the cascade.

conversation tree) has a single starting post called the
cascade initiator with no out-links to other posts (e.g.
nodes a, b, c, d in Figure 1(c)). Posts then join the cas-
cade by linking to the initiator, and subsequently new
posts join by linking to members within the cascade,
where the links obey time order (∆ > 0). Figure 2 gives
a list of cascades extracted from Post network in Fig-
ure 1(c). Since a link points from the follow-up post to
the existing (older) post, influence propagates following
the reverse direction of the edges.

We also define a non-trivial cascade to be a cascade
containing at least two posts, and therefore a trivial
cascade is an isolated post. Figure 2 shows all non-
trivial cascades in Figure 1(c), but not the two trivial
cascades. Cascades form two main shapes, which we
will refer to as stars and chains. A star occurs when
a single center posts is linked by several other posts,
but the links do not propagate further. This produces a
wide, shallow tree. Conversely, a chain occurs when
a root is linked by a single post, which in turn is
linked by another post. This creates a deep tree
that has little breadth. As we will later see most
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Figure 4: Activity counts (number of posts and number
of links) per day of week, from Monday to Sunday,
summed over entire dataset.

5 Observations, patterns and laws

5.1 Temporal dynamics of posts and links Traf-
fic in blogosphere is not uniform; therefore, we consider
traffic patterns when analyzing influence in the tempo-
ral sense. As Figure 3 illustrates, there is a seven-day
periodicity. Further exploring the weekly patterns, Fig-
ure 4 shows the number of posts and the number of
blog-to-blog links for different days of the week, aggre-
gated over the entire dataset. Posting and blog-to-blog
linking patterns tend to have a weekend effect of sharply
dropping off at weekends.

Next, we examine how a post’s popularity grows
and declines over time. We collect all in-links to a post
and plot the number of links occurring after each day
following the post. This creates a curve that indicates
the rise and fall of popularity. By aggregating over a
large set of posts we obtain a more general pattern.

Top left plot of Figure 5 shows number of in-
links for each day following a post for all posts in the
dataset, while top right plot shows the in-link patterns
for Monday posts only (in order to isolate the weekly
periodicity). It is clear that the most links occur on the
first 24 hours after the post, after that the popularity
generally declines. However, in the top right plot, we
note that there are “spikes” occurring every seven days,
each following Monday. It almost appears as if there
is compensatory behavior for the sparse weekend links.
However, this is not the case. Mondays do not have
an unusual number of links; Monday only appears to
spike on these graphs because the natural drop-off of
popularity in the following days allows Monday to tower
above its followers.

Thus, fitting a general model to the drop-off graphs
may be problematic, since we might obtain vastly
different parameters across posts simply because they
occur at different times during the week. Therefore,
we smooth the in-link plots by applying a weighting
parameter to the plots separated by day of week. For
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Figure 5: Number of in-links vs. the days after the post
in log-linear scale; when considering all posts (top left),
only Monday posts (top right). After removing the day-
of-the week effects (middle row). Power law fit to the
data with exponents −1.6 and −1.46 (bottom row).

each delay ∆ on the horizontal axis, we estimate the
corresponding day of week d, and we prorate the count
for ∆ by dividing it by l(d), where l(d) is the percent of
blog links occurring on day of week d.

This weighting scheme normalizes the curve such
that days of the week with less traffic are bumped up
further to meet high traffic days, simulating a popularity
drop-off that might occur if posting and linking behavior
were uniform throughout the week. A smoothed version
of the post drop-offs is shown in the middle row of
Figure 5.

We fit the power-law distribution with a cut-off
in the tail (bottom row). We fit on 30 days of data,
since most posts in the graph have complete in-link
patterns for the 30 days following publication. We
performed the fitting over all posts and for all days
of the week separately, and found a stable power-law
exponent of around −1.5, which is exactly the value
predicted by the model where the bursty nature of
human behavior is a consequence of a decision based

Popularity dies with time!!
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5 Observations, patterns and laws

5.1 Temporal dynamics of posts and links Traf-
fic in blogosphere is not uniform; therefore, we consider
traffic patterns when analyzing influence in the tempo-
ral sense. As Figure 3 illustrates, there is a seven-day
periodicity. Further exploring the weekly patterns, Fig-
ure 4 shows the number of posts and the number of
blog-to-blog links for different days of the week, aggre-
gated over the entire dataset. Posting and blog-to-blog
linking patterns tend to have a weekend effect of sharply
dropping off at weekends.

Next, we examine how a post’s popularity grows
and declines over time. We collect all in-links to a post
and plot the number of links occurring after each day
following the post. This creates a curve that indicates
the rise and fall of popularity. By aggregating over a
large set of posts we obtain a more general pattern.

Top left plot of Figure 5 shows number of in-
links for each day following a post for all posts in the
dataset, while top right plot shows the in-link patterns
for Monday posts only (in order to isolate the weekly
periodicity). It is clear that the most links occur on the
first 24 hours after the post, after that the popularity
generally declines. However, in the top right plot, we
note that there are “spikes” occurring every seven days,
each following Monday. It almost appears as if there
is compensatory behavior for the sparse weekend links.
However, this is not the case. Mondays do not have
an unusual number of links; Monday only appears to
spike on these graphs because the natural drop-off of
popularity in the following days allows Monday to tower
above its followers.

Thus, fitting a general model to the drop-off graphs
may be problematic, since we might obtain vastly
different parameters across posts simply because they
occur at different times during the week. Therefore,
we smooth the in-link plots by applying a weighting
parameter to the plots separated by day of week. For
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in log-linear scale; when considering all posts (top left),
only Monday posts (top right). After removing the day-
of-the week effects (middle row). Power law fit to the
data with exponents −1.6 and −1.46 (bottom row).

each delay ∆ on the horizontal axis, we estimate the
corresponding day of week d, and we prorate the count
for ∆ by dividing it by l(d), where l(d) is the percent of
blog links occurring on day of week d.

This weighting scheme normalizes the curve such
that days of the week with less traffic are bumped up
further to meet high traffic days, simulating a popularity
drop-off that might occur if posting and linking behavior
were uniform throughout the week. A smoothed version
of the post drop-offs is shown in the middle row of
Figure 5.

We fit the power-law distribution with a cut-off
in the tail (bottom row). We fit on 30 days of data,
since most posts in the graph have complete in-link
patterns for the 30 days following publication. We
performed the fitting over all posts and for all days
of the week separately, and found a stable power-law
exponent of around −1.5, which is exactly the value
predicted by the model where the bursty nature of
human behavior is a consequence of a decision based
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Figure 9: Common cascade shapes ordered by the frequency. Cascade with label Gr has the frequency rank r.

interested in how this process propagates, how large are
the cascades it forms, and as it will be shown later,
what are the models that mimic cascading behavior and
produce realistic cascades.

Cascades are subgraphs of the Post network that
have a single root post, are time increasing (source links
an existing post), and present the propagation of the
information from the root to the rest of the cascade.

Given the Post network we extracted all information
cascades using the following procedure. We found all
cascade initiator nodes, i.e. nodes that have zero out-
degree, and started following their in-links. This process
gives us a directed acyclic graph with a single root
node. As illustrated in Figure 2 it can happen that
two cascades merge, e.g. a post gives a summary of
multiple conversations (cascades). For cascades that
overlap our cascade extraction procedure will extract
the nodes bellow the connector node multiple times
(since they belong to multiple cascades). To obtain
the examples of the common shapes and count their
frequency we used the algorithms as described in [17].

5.4.1 Common cascade shapes First, we give ex-
amples of common Post network cascade shapes in Fig-
ure 9. A node represents a post and the influence flows
from the top to the bottom. The top post was written
first, other posts linking to it, and the process propa-
gates. Graphs are ordered by frequency and the sub-
script of the label gives frequency rank. Thus, G124 is
124th most frequent cascade with 11 occurrences.

We find the total of 2, 092, 418 cascades, and 97%
of them are trivial cascades (isolated posts), 1.8% are
smallest non-trivial cascades (G2), and the remaining
1.2% of the cascades are topologically more complex.

Most cascades can essentially be constructed from
instances of stars and trees, which can model more com-
plicated behavior like that shown in Figure 9. Cascades
tend to be wide, and not too deep. Structure G107,

which we call a cite-all chain, is especially interesting.
Each post in a chain refers to every post before it in the
chain.

We also find that the cascades found in the graph
tend to take certain shapes preferentially. Also notice
that cascade frequency rank does not simply decrease as
a function of the cascade size. For example, as shown
on Figure 9, a 4-star (G4) is more common than a chain
of 3 nodes (G5). In general stars and shallow bursty
cascades are the most common type of cascades.

5.4.2 Cascade topological properties What is
the common topological pattern in the cascades? We
next examine the general cascade behavior by measur-
ing and characterizing the properties of real cascades.

First we observe the degree distributions of the
cascades. This means that from the Post network we
extract all the cascades and measure the overall degree
distribution. Essentially we work with a bag of cascades,
where we treat a cascade as separate disconnected sub-
graph in a large network.

Figure 10(a) plots the out-degree distribution of
the bag of cascades. Notice the cascade out-degree
distribution is truncated, which is the result of not
perfect link extraction algorithm and the upper bound
on the post out-degree (500).

Figure 10(b) shows the in-degree distribution of the
bag of cascades, and (c) plots the in-degree distribution
of nodes at level L of the cascade. A node is at level
L if it is L hops away from the root (cascade initiator)
node. Notice that the in-degree exponent is stable and
does not change much given the level in the cascade.
This means that posts still attract attention (get linked)
even if they are somewhat late in the cascade and appear
towards the bottom of it.

Next, we ask what distribution do cascade sizes fol-
low? Does the probability of observing a cascade on n
nodes decreases exponentially with n? We examine the

Common Cascade Shapes

Common Cascade shapes ordered by the frequency
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Figure 10: Out- and in-degree distribution over all cascades extracted from the Post network (a,b) and the in-
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is remarkably stable over the levels.
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Cascade Size Distributions over the bag of cascades ex-
tracted from the Post network. We consider three differ-
ent distributions: over all cascade size distribution, and
separate size distributions of star and chain cascades.
We chose stars and chains since they are well defined,
and given the number of nodes in the cascade, there is
no ambiguity in the topology of a star or a chain.

Figure 11 gives the Cascade Size Distribution plots.
Notice all follow a heavy-tailed distribution. We fit a
power-law distribution and observe that overall cascade
size distribution has power-law exponent of ≈ −2
(Figure 11(a)), stars have ≈ −3.1 (Figure 11(b)), and
chains are small and rare and decay with exponent
≈ −8.5 (Fig. 11(c)). Also notice there are outlier chains
(Fig. 11(c)) that are longer than expected. We attribute
this to possible flame wars between the blogs, where
authors publish posts and always refer to the last post
of the other author. This creates chains longer than
expected.

Observation 2. Probability of observing a cascade on

n nodes follows a Zipf distribution:

p(n) ∝ n−2

As suggested by Figure 9 most cascades follow
tree-like shapes. To further verify this we examine
how the diameter, defined as the length of the longest
undirected path in the cascade, and the relation between
the number of nodes and the number of edges in the
cascade change with the cascade size in Figure 12.

This gives further evidence that the cascades are
mostly tree-like. We plot the number of nodes in
the cascade vs. the number of edges in the cascade
in Figure 12(a). Notice the number of edges e in the
cascade increases almost linearly with the number of
nodes n (e ∝ n1.03). This suggests that the average
degree in the cascade remains constant as the cascade
grows, which is a property of trees and stars. Next,
we also measure cascade diameter vs. cascade size
(Figure 12(b)). We plot on linear-log scales and fit
a logarithmic function. Notice the diameter increases
logarithmically with the size of the cascade, which
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Cascade Size Distributions over the bag of cascades ex-
tracted from the Post network. We consider three differ-
ent distributions: over all cascade size distribution, and
separate size distributions of star and chain cascades.
We chose stars and chains since they are well defined,
and given the number of nodes in the cascade, there is
no ambiguity in the topology of a star or a chain.

Figure 11 gives the Cascade Size Distribution plots.
Notice all follow a heavy-tailed distribution. We fit a
power-law distribution and observe that overall cascade
size distribution has power-law exponent of ≈ −2
(Figure 11(a)), stars have ≈ −3.1 (Figure 11(b)), and
chains are small and rare and decay with exponent
≈ −8.5 (Fig. 11(c)). Also notice there are outlier chains
(Fig. 11(c)) that are longer than expected. We attribute
this to possible flame wars between the blogs, where
authors publish posts and always refer to the last post
of the other author. This creates chains longer than
expected.

Observation 2. Probability of observing a cascade on

n nodes follows a Zipf distribution:

p(n) ∝ n−2

As suggested by Figure 9 most cascades follow
tree-like shapes. To further verify this we examine
how the diameter, defined as the length of the longest
undirected path in the cascade, and the relation between
the number of nodes and the number of edges in the
cascade change with the cascade size in Figure 12.

This gives further evidence that the cascades are
mostly tree-like. We plot the number of nodes in
the cascade vs. the number of edges in the cascade
in Figure 12(a). Notice the number of edges e in the
cascade increases almost linearly with the number of
nodes n (e ∝ n1.03). This suggests that the average
degree in the cascade remains constant as the cascade
grows, which is a property of trees and stars. Next,
we also measure cascade diameter vs. cascade size
(Figure 12(b)). We plot on linear-log scales and fit
a logarithmic function. Notice the diameter increases
logarithmically with the size of the cascade, which

Cascade Size Distribution

J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M.Hurst. Cascading behavior in large blog graphs. In Proc. ICDM, 2007



From this dataset, we build a network on the users from the struc-
ture of interaction via @-messages; for users X and Y , if X in-
cludes “@Y ” in at least t tweets, for some threshold t, we include
a directed edge from X to Y . @-messages are used on Twitter
for a combination of communication and name-invocation (such
as mentioning a celebrity via @, even when there is no expecta-
tion that they will read the message); under all these modalities,
they provide evidence that X is paying attention to Y , and with a
strength that can be tuned via the parameter t.1

For a given user X , we call the set of other users to whom X has
an edge the neighbor set of X . As users in X’s neighbor set each
mention a given hashtag H in a tweet for the first time, we look
at the probability that X will first mention it as well; in effect, we
are asking, “How do successive exposures to H affect the proba-
bility that X will begin mentioning it?” Concretely, following the
methodology of [7], we look at all users X who have not yet men-
tioned H , but for whom k neighbors have; we define p(k) to be the
fraction of such users who mention H before a (k + 1)

st neighbor
does so. In other words, p(k) is the fraction of users who adopt
the hashtag directly after their kth “exposure” to it, given that they
hadn’t yet adopted it.

As an example, Figure 1 shows a plot of p(k) as a function of
k averaged over the 500 most-mentioned hashtags in our dataset.
Note that these top hashtags are used in sufficient volume that one
can also construct meaningful p(k) curves for each of them sepa-
rately, a fact that will be important for our subsequent analysis. For
now, however, we can already observe two basic features of the av-
erage p(k) curve’s shape: a ramp-up to a peak value that is reached
relatively early (at k = 2, 3, 4), followed by a decline for larger
values of k. In keeping with the informal discussion above, we de-
fine the stickiness of the curve to be the maximum value of p(k)
(since this is the maximum probability with which an exposure to
H transfers to another user), and the persistence of the curve to be
a measure of its rate of decay after the peak.2 We will find that, in
a precise sense, these two quantities — stickiness and persistence
— are sufficient to approximately characterize the shapes of indiv-
didual p(k) curves.

Variation in Adoption Dynamics Across Topics. The shape of
p(k) averaged over all hashtags is similar to analogous curves mea-
sured recently in other domains [7], and our interest here is in going
beyond this aggregate shape and understanding how these curves
vary across different kinds of hashtags. To do this, we first classi-
fied the 500 most-mentioned hashtags according to their topic. We
then average the curves p(k) separately within each category and
compare their shapes.3

1One can also construct a directed network from the follower re-
lationship, including an edge from X to Y if X follows Y . We
focus here on @-messages in part because of a data resolution is-
sues — they can be recovered with exact time stamps from the
tweets themselves — but also because of earlier research suggest-
ing that users often follow other users in huge numbers and hence
potentially less discriminately, whereas interaction via @-messages
indicates a kind of attention that is allocated more parsimoniously,
and with a strength that can be measured by the number of repeat
occurrences [17].
2We formally define persistence in Section 3; roughly, it is the ratio
of the area under the curve to the area of the largest rectangle that
can be circumscribed around it.
3In Section 2 we describe the methodology used to perform this
manual classification in detail. In brief, we compared independent
classifications of the hashtags obtained by disjoint means, involving
annotation by the authors compared with independent annotation
by a group of volunteers. Our results based on the average curves
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Figure 1: Average exposure curve for the top 500 hashtags.
P (K) is the fraction of users who adopt the hashtag directly af-
ter their kth exposure to it, given that they had not yet adopted
it

Many of the categories have p(k) curves that do not differ sig-
nificantly in shape from the average, but we find unusual shapes
for several important categories. First, for political hashtags, the
persistence has a significantly larger value than the average — in
other words, successive exposures to a political hashtag have an un-
usually large effect relative to the peak. This is striking in the way
that it accords with the “complex contagion” principle discussed
earlier: when a particular behavior is controversial or contentious,
people may need more exposure to it from others before adopting
it themselves [5, 6].

In contrast, we find a different form of unusual behavior from
a class of hashtags that we refer to as Twitter idioms — a kind
of hashtag that will be familiar to Twitter users in which com-
mon English words are concatenated together to serve as a marker
for a conversational theme (e.g. #cantlivewithout, #dontyouhate,
#iloveitwhen, and many others, including concatenated markers for
weekly Twitter events such as #musicmonday and #followfriday.)
Here the stickiness is high, but the persistence is unusually low; if
a user doesn’t adopt an idiom after a small number of exposures,
the marginal chance they do so later falls off quickly.

Subgraph Structure and Tie Strength. In addition to the person-
to-person mechanics of spread, it is also interesting to look at the
overall structure of interconnections among the initial adopters of
a hashtag. To do this, we take the first m individuals to mention
a particular hashtag H , and we study the structure of the subgraph
Gm induced on these first m mentioners. In this structural con-
text, we again find that political hashtags exhibit distinctive fea-
tures — in particular, the subgraphs Gm for political hashtags H
tend to exhibit higher internal degree, a greater density of triangles,
and a large of number of nodes not in Gm who have significant

arising from this classification are robust in the following sense:
despite differences in classification of some individual hashtags by
the two groups, the curves themselves exhibit essentially identical
behavior when computed from either of the two classifications sep-
arately, as well as from an intersection of the two classifications.

How many exposures do you 

need…?

Average exposure curve for top 500 hashtags

P(k) = fraction of users who adopt 
hashtag after their k-th exposure

Romero, D. M.; Meeder, B.; and Kleinberg, J. 2011. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. WWW11
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Figure 2: F (P ) for the different types of hashtags.The black
dots are the average F (P ) among all hashtags, the red x is the
average for the specific category, and the green dots indicate the
90% expected interval where the average for the specific set of
hashtags would be if the set was chosen at random. Each point
is the average of a set of at least 10 hashtags

#cantlivewithout and #hcr. We also noticed that some curves had
much higher maximum values than others.4

In this discussion, we are basing differences among hashtags on
different structural properties of their influence curves. In order to
make these distinctions more precise we use the following mea-
sures.

First, we formalize a notion of “persistence” for an influence
curve, capturing how rapidly it decays. Formally, given a func-
tion P : [0,K] ! [0, 1] we let R(P ) = K max

k2[0,K]
{P (k)} be the

area of the rectangle with length K and height max

k2[0,K]
{P (k)}. We

let A(P ) be the area under the curve P assuming the point P (k) is
connected to the point P (k + 1) by a straight line. Finally, we let

F (P ) =

A(P )

R(P )

be the persistence parameter.

When an influence curve P initially increases rapidly and then
decreases, it will have a smaller value of F (P ) than a curve eP
which increases slowly and the saturates. Similarly, an influence
curve P that slowly increases monotonically will have a smaller
value of F (P ) than a curve eP that initially increases rapidly and
then saturates. Hence the measure F captures some differences
in the shapes of the influence curves. In particular, applying this
measure to an influence curve would tell us something about its
persistence; the higher the value of F (P ), the more persistent P is.

Second, given an influence curve P : [0,K] ! [0, 1] we let
M(P ) = max

k2[0,K]
{P (k)} be the stickiness parameter, which gives

us a sense for how large the probability of usage can be for a par-
ticular hashtag based on the most effective exposure.

4As k gets larger the amount of data used to calculate P (k) de-
creases, making the error intervals very large and the curve very
noisy. In order to take this into account we only defined P (k) when
the relative error was less than some value ✓. Throughout the study
we checked that the results held for different values of ✓.
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Figure 3: Sample exposure curves for hashtags #cantlivewith-
out (blue) and #hcr (red).

We are interested in finding differences between the spreading
mechanism of different topics on Twitter. We start by finding out
if hashtags corresponding to different topics have influence curves
with different shapes. We found significant differences in the val-
ues of F (P ) for different topics. Figure 2 shows the average F (P )

for the different categories, compared to a baseline in which we
draw a set of categories of the same size uniformly at random from
the full collection of 500. We see that politics and sports have an
average value of F (P ) which is significantly higher than expected
by chance, while for Idioms and Music it is lower. This suggests
that the mechanism that controls the spread of hashtags related to
sports or politics tends to be more persistent than average; repeated
exposures to users who use these hashtags affects the probability
that a person will eventually use the hashtag more positively than
average. On the other hand, for Idioms and Music, the effect of re-
peated exposures falls off more quickly, relative to the peak, com-
pared to average.

Figure 4 shows the point-wise average of the influence curves for
each one of the categories. Here we can see some of the differences
in persistence and stickiness the curves have. For example, the
stickiness of the topics Music, Celebrity, Idioms, and politics tends
to be higher that average since the average influence curve for those
categories tends to be higher than the average influence curve for
all hashtags, while that of Technology, Movies, and Sports tends to
be lower than average. On the other hand, these plots give us more
intuition on why we found that politics and Sports have a high per-
sistence while for Idioms and Music it is low. In the case of Politics,
we see that the red curve starts off just below the green curve (the
upper error bar) and as k increases, the red curve increases enough
to be above the green. Similarly, the red curve for Sports starts be-
low the blue curve and it ends above it. In the case of Idioms, the
red curve initially increases rapidly but then it it drops below the
blue curve. Similarly, the red curve for Music is always very high
and above all the other curves, but it drops faster than the other
curves at the end.

Approximating Curves via Stickiness and Persistence. When
we compare curves based on their stickiness and persistence, it

Example: Exposure v/s Adoption

Exposure curve for hashtags #cantlivewithout 
(blue) and #hcr (red)

Romero, D. M.; Meeder, B.; and Kleinberg, J. 2011. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. WWW11
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(a) Celebrity
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(b) Sports
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(c) Music
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(d) Technology
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(e) Idioms
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(f) Political
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(g) Movies
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(h) Games

Figure 4: Point-wise average influence curves. The blue line is the average of all the influence curves, the red line is the average for
the set of hashtags of the particular topic, and the green lines indicate the interval where the red line is expected to be if the hashtags
were chosen at random.
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(a) Celebrity
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(b) Sports
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(c) Music
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(d) Technology
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(e) Idioms
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(f) Political
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(g) Movies
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(h) Games

Figure 4: Point-wise average influence curves. The blue line is the average of all the influence curves, the red line is the average for
the set of hashtags of the particular topic, and the green lines indicate the interval where the red line is expected to be if the hashtags
were chosen at random.

“Complex Contagion” phenom
ena

Politics, Celebrity, Idioms, and 
Music

Technology, Movies, and 
Sports

Romero, D. M.; Meeder, B.; and Kleinberg, J. 2011. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. WWW11



 “Adoption of politically controversial hashtags 

are affected by multiple exposures, while 

repeated exposures h
ave less effect on adoption 

of conversational idioms…”



Can cascades be predic
ted…??
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FIG. 1. Stochastic Popularity dynamics. (a) Citations of 20 pa-
pers selected randomly from Physical Review during 1960s. (b) Fre-
quency of 20 Hashtags selected randomly from Twitter in 2012.

II. REINFORCED POISSON PROCESS

A. Model Formulation

The popularity dynamics of individual item d during time
period [0, T ] is characterized by a set of time moments
{tdi }(1 ≤ i ≤ nd) when each attention is received, where nd

represents the total number of attentions. Without loss of gen-
erality, we have 0 = td0 ≤ td1 ≤ · · · ≤ tdi ≤ · · · ≤ tdnd

≤ T .
To model the arrival process of {tdi }, we consider two ma-
jor phenomena confirmed independently in previous studies
of population dynamics: (1) the reinforcement capturing the
“rich-get-richer” mechanism, i.e., previous attention triggers
more subsequent attentions [8]; (2) the aging effect char-
acterizing time-dependent attractiveness of individual items.
Taken these two factors together, for an individual item d, we
model its popularity dynamics as a reinforced Poisson process
(RPP) [18] characterized by the rate function xd(t) as

xd(t) = λdfd(t; θd)id(t), (1)

where λd is the intrinsic attractiveness, fd(t; θd) is the relax-
ation function that characterizes the temporal inhomogeneity
due to the aging effect modulated by parameters θd, and id(t)
is the total number of attentions received up to time t. From
Bayesian viewpoint, the total number of attentions id(t) is the
sum of the number of real attentions and the effective number
of attentions which plays the role of prior belief. Here, we
assume that all items are created equal and hence the effective
number of attentions for all items has the same value, denoted
bym. Therefore during the time interval between the (i−1)th

i 1ti 1
d ti

dt1
d

dtnd
d… … T

 d !d

… …

0 i"2 i"1 nnd 1 nd… …

p1 p0

FIG. 2. Graphical representation of the generative model for popu-
larity dynamics via reinforced Poisson process.

and ith attentions, we have

id(t) = m+ i− 1, (2)

where 1 ≤ i ≤ nd. Accordingly, during the time interval be-
tween the ndth attention and T , the total number of attention
ism+ nd.
The length of time interval between two consecutive atten-

tions follows an inhomogeneous Poisson process. Therefore,
given that the (i−1)th attention arrives at tdi−1, the probability
that the ith attention arrives at tdi follows

p1(t
d
i |tdi−1) = λdfd(t

d
i ; θd)(m+ i− 1)

×e
−

∫ t
d
i

td
i−1

λdfd(t;θd)(m+i−1)dt
, (3)

and the probability that no attention arrives between tdnd
and

T is

p0(T |tdnd
) = e

−
∫

T

td
nd

λdfd(t;θd)(m+nd)dt
. (4)

Incorporating Eqs. (3) and (4) with the fact that attentions
during different time intervals are statistically independent,
the likelihood of observing the popularity dynamics {tdi } dur-
ing time interval [0, T ] follows

L(λd, θd) = p0(T |tdnd
)

nd
∏

i=1

p1(t
d
i |tdi−1)

= λnd

d

nd
∏

i=1

(m+ i− 1)fd(t
d
i ; θd)×

e−λd((m+nd)Fd(T ;θd)−
∑nd

i=1
Fd(t

d

i
;θd)),

(5)

where Fd(t; θd) ≡
∫ t

0 fd(t; θd)dt and we have reorganized the
terms on the exponent for simplicity. For clarity, we illustrate
the proposed RPP model in the graphical representation (Fig-
ure 2).

B. Parameter Estimation and Prediction

By maximizing the likelihood function in Eq. (5), we obtain
the most likely fitness parameter λ∗

d for item d in closed form:

λ∗
d =

nd

(m+ nd)Fd(T ; θ∗d)−
∑nd

i=1 Fd(tdi ; θ
∗
d)
. (6)

Change in frequency of
 hashtags 

with time

J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M.Hurst. Cascading behavior in large blog graphs. In Proc. ICDM, 2007



Will a cascade reach the median size?
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?k reshares
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Will cascade reach median size?

J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? In WWW ’14, 2014.



What factors affect 

predictability??

Content

Temporal

Structural

User

e.g. time between re-shares

e.g. +ve or -ve emotion

e.g.topicality of user

e.g. weiner index



How well can we predict cascade doubling?

All
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All but temporal
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Accuracy (k=5)
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All but temporal

Which features perform better for 

prediction task??

Logistic Regression Accuracy for k=5 
J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? In WWW ’14, 2014.



Easier to predict if larger cascades will 
double in size
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How does the performance change 

with k…???

J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? In WWW ’14, 2014.



Can we come up with a model for 

cascade prediction??



Cascade Generation Model

Susceptible Infected Susceptible

1. Uniformly at random pick a blog u, mark it as

infected and add to the cascade graph

2. Infect each of its directed neighbours with probability �

3. Add the newly infected nodes {v1, v2, . . . , vn} to the

cascade

4. Set the state of node u as not infected or susceptible.

Continue recursively from step 2, until no nodes are

infected.



Frequent Cascade shap
es

generation model is generated by the following process.

(i) Uniformly at random pick blog u in the Blog
network as a starting point of the cascade, set its
state to infected, and add a new node u to the
cascade graph.

(ii) Blog u that is now in infected state, infects each
of its uninfected directed neighbors in the Blog
network independently with probability β. Let
{v1, . . . , vn} denote the set of infected neighbors.

(iii) Add new nodes {v1, . . . , vn} to the cascade and link
them to node u in the cascade.

(iv) Set state of node u to not infected. Continue
recursively with step (ii) until no nodes are infected.

We make a few observations about the proposed
model. First, note that the blog immediately recovers
and thus can get infected multiple times. Every time a
blog gets infected a new node is added to the cascade.
This accounts for multiple posts from the blog partici-
pating in the same cascade. Second, we note that in this
version of the model we do not try to account for topics
or model the influence of particular blogs. We assume
that all blogs and all conversations have the same value
of the parameter β. Third, the process as describe above
generates cascades that are trees. This is not big limi-
tation since we observed that most of the cascades are
trees or tree-like. In the spirit of our notion of cascade
we assume that cascades have a single starting point,
and do not model for the collisions of the cascades.

6.2 Validation of the model We validate our
model by extensive numerical simulations. We com-
pare the obtained cascades towards the real cascades ex-
tracted from the Post network. We find that the model
matches the cascade size and degree distributions.

We use the real Blog network over which we propa-
gate the cascades. Using the Cascade generation model
we also generate the same number of cascades as we
found in Post network (≈ 2 million). We tried several
values of β parameter, and at the end decided to use
β = 0.025. This means that the probability of cas-
cade spreading from the infected to an uninfected blog
is 2.5%. We simulated our model 10 times, each time
with a different random seed, and report the average.

First, we show the top 10 most frequent cascades
(ordered by frequency rank) as generated by the Cas-
cade generation model in Figure 14. Comparing them
to most frequent cascades from Figure 9 we notice that
top 7 cascades are matched exactly (with an exception
of ranks of G4 and G5 swapped), and rest of cascades
can also be found in real data.

Figure 14: Top 10 most frequent cascades as generated
by the Cascade generation model. Notice similar shapes
and frequency ranks as in Figure 9.

Next, we show the results on matching the cascade
size and degree distributions in Figure 15. We plot the
true distributions of the cascades extracted from the
Post network with dots, and the results of our model are
plotted with a dashed line. We compare four properties
of cascades: (a) overall cascade size distribution, (b)
size distribution of chain cascades, (c) size distribution
of stars, and (d) in-degree distribution over all cascades.

Notice a very good agreement between the reality
and simulated cascades in all plots. The distribution
over of cascade sizes is matched best. Chains and
stars are slightly under-represented, especially in the
tail of the distribution where the variance is high. The
in-degree distribution is also matched nicely, with an
exception of a spike that can be attributed to a set of
outlier blogs all with in-degree 52. Note that cascades
generated by the Cascade generation model are all trees,
and thus the out-degree for every node is 1.

6.3 Variations of the model We also experimented
with other, more sophisticated versions of the model.
Namely, we investigated various strategies of selecting
a starting point of the cascade, and using edge weights
(number of blog-to-blog links) to further boost cascades.

We considered selecting a cascade starting blog
based on the blog in-degree, in-weight or the number of
posts. We experimented variants where the probability
β of propagating via a link is not constant but also
depends on the weight of the link (number of references
between the blogs). We also considered versions of the
model where the probability β exponentially decays as
the cascade spreads away from the origin.

We found out that choosing a cascade starting blog
in a biased way results in too large cascades and non-
heavy tailed distributions of cascade sizes. Intuitively,
this can be explained by the fact that popular blogs
are in the core of the Blog network, and it is very easy
to create large cascades when starting in the core. A
similar problem arises when scaling β with the edge
weight. This can also be explained by the fact that we
are not considering specific topics and associate each
edge with a topic (some blog-to-blog edges may be very
topic-specific) and thus we allow the cascade to spread
over all edges regardless of the particular reason (the

Top 10 most frequent cascades generated by
Cascade Generation Model 

J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M.Hurst. Cascading behavior in large blog graphs. In Proc. ICDM, 2007



SEISMIC:
A Self Excitation Model for Information Cascades 

Given tweet and retweets upto time “T”, can 
we predict its final popularity…?  

Goal



Infectiousness: “probability” of retweeting

“Rate of viewing”

In SEISMIC

�t = pt ·
P

tit ni�(t� t)

(Intensity of arrival of new newly exposed nodes)

Poisson Process: �t = �

Defining Intensity for SEIS
MIC
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Figure 1: First 6 hours of retweeting activity of a popular
tweet [1] (top). The controversial tweet is about the fresh death
of dictator Muammar Gaddafi and mentions singer Justin
Bieber. Interestingly, the car manufacturer Chevrolet Twitter
account inappropriately retweeted the tweet about 30 minutes
after the original tweet, which possibly lead to tweet’s sustained
popularity. Tweet infectiousness against time as estimated by
SEISMIC (middle). Predictions of the tweet’s final retweet count
(denoted as “Truth”) as a function of time (bottom). We com-
pare SEISMIC with time series linear regression (LR), “Ob-
served” plots the cumulative number of observed retweets by a
given time. Notice SEISMIC quickly finds an accurate estimate
of the tweet’s final retweet count.

Moreover, our model is able to identify at each time point whether
the cascade is in the supercritical or subcritical state, based on
whether its infectiousness is above or below a critical threshold.
A cascade in the supercritical state is going through an “explosion”
period and its final size cannot be predicted accurately at the cur-
rent time. On the contrary, a cascade is tractable if it is in subcriti-
cal state. In this case, we are able to predict its ultimate popularity
accurately by modeling the future cascading behavior by a Galton-
Watson tree.

Our SEISMIC approach makes several contributions:
• Generative model: SEISMIC imposes no parametric assump-

tions and requires no expensive feature engineering. More-
over, as complete social network structure may be hard to ob-
tain, SEISMIC assumes minimal knowledge of the network:

The only required input is the time history of reshares and
the degrees of the resharing nodes.

• Scalable computation: Making a prediction using SEISMIC
only requires computational time linear in the number of ob-
served reshares. Since predictions for individual posts can be
made independently, our algorithm can also be easily paral-
lelized.

• Ease of interpretation: For an individual cascade, the model
synthesizes all its past history into a single infectiousness pa-
rameter. This infectiousness parameter holds a clear mean-
ing, and can serve as input to other applications.

We evaluate SEISMIC on one month of complete Twitter data,
where users post tweets which others can then reshare by retweet-
ing them. We demonstrate that SEISMIC is able to predict the fi-
nal retweet count of a given tweet with 30% better accuracy than
the state-of-the-art approaches (e.g., [12]). For reasonably popu-
lar tweets, our model achieves 15% relative error in predicting the
final retweet count after observing the tweet for 1 hour, and 25%
error after observing the tweet for just 10 minutes. Moreover, we
also demonstrate how SEISMIC is able to identify tweets that will
go “viral” and be among the most popular tweets in the future. By
maintaining a dynamic list of 500 tweets over time, we are able to
identify 78 of the 100 most reshared tweets and 281 of the 500 most
reshared tweets in just 10 minutes after they are posted.

The rest of the paper is organized as follows: Section 2 sur-
veys the related work. Section 3 describes SEISMIC, and Section 4
shows how the model can be used to predict the final size of an
information cascade. We evaluate our method and compare its per-
formance with a number of baselines as well as state-of-the-art ap-
proaches in Section 5. Last, in Section 6, we conclude and discuss
future research directions.

2. RELATED WORK
The study of information cascades is a rich and active field [27].

Recent models for predicting size of information cascades are gen-
erally characterized by two types of approaches, feature based meth-
ods and point process based methods.

Feature based methods first extract an exhaustive list of poten-
tially relevant features, including content features, original poster
features, network structural features, and temporal features [6]. Then
different learning algorithms are applied, such as simple regression
models [2, 6], probabilistic collaborative filtering [35], regression
trees [3], content-based models [24], and passive-aggressive algo-
rithms [26]. There are several issues with such approaches: labori-
ous feature engineering and extensive training are crucial for their
success, and the performance is highly sensitive to the quality of
the features [4, 30]. Such approaches also have limited applicabil-
ity because they cannot be used in real-time online settings—given
the massive amount of posts being produced every second, it is
practically impossible to extract all the necessary features for every
post and then apply complicated prediction rules. In contrast, SEIS-
MIC requires no feature engineering and results in an efficiently
computable formula that allows it to predict the final popularity of
millions of posts as they are spreading through the network.

The second type of approach is based on point processes, which
directly models the formation of an information cascade in a net-
work. Such models were mostly developed for the complementary
problem of network inference, where one observes a number of in-
formation cascades and tries to infer the structure of the underlying
network over which the cascades propagated [8, 10, 13, 14, 15, 18,
33, 36]. These methods have been successfully applied to study the
spread of memes on the web [10, 14, 32, 33] as well as hashtags on

Intuition for Infectious
ness

p̂t =
Number of Retweets

Number of views
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Predicting final popularity

Figure 2: An illustration of the information diffusion tree. We
observe the cascade up to time t (denoted by a dashed line)
and the question is how the cascade tree is going to grow in
the future. We define variables Zk which denote the number
of reshares caused by the kth generation descendants. Using
variables Zk the final reshare count R1 can then be simply
computer as Rt +

1P
k=1

Zk.

PROPOSITION 4.1. Assume the (out-)degrees in the network are
i.i.d. with expectation n⇤ and the infectiousness parameter ps is a
constant p for s � t. Then, we have

E[R1| Ft] =

8
>><

>>:

Rt +
p(Nt �Ne

t )

1� pn⇤
, if p <

1

n⇤
,

1, if p � 1

n⇤
.

(7)

PROOF. First, we consider the case where p < 1/n⇤. We define
a sequence of random variables {Z1, Z2, Z3, . . .} that models the
future information diffusion tree, as illustrated in Figure 2. In this
tree, Zk denotes the number of reshares made by the kth genera-
tion descendants (counting from generation Rt onward). Thus, the
1st generation descendants Z1 refers to the number of new reshares
generated by the posts created before time t, the 2nd generation
descendants Z2 refers to the reshares of the posts of the 1st descen-
dants, and so on. Notice that the summation over the Zk’s gives the
post’s final reshare count R1 = Rt +

P1
k=1 Zk. In the following

we use descendants Zk only for deriving Eq. (7) and emphasize
that our final estimator does not require explicit network structure
information.

Given Z1, the sequence of random variables Zk defines a Galton-
Watson tree with the offspring expectation µ = n⇤p [11]. Here, µ
denotes the expected number of reshares that the post gets. Using a
standard branching process result, we have Zi/µ

i is a martingale.
Therefore, 8k > 1, E [Zk+1|Zk] = µ Zk, and,

E
" 1X

k=1

Zk

�����Z1

#
=

Z1

(1� µ)
=

Z1

(1� n⇤p)
.

Hence, we obtain

E[R1|Ft] = Rt + E
" 1X

k=1

Zk

#
= Rt +

E[Z1]

(1� n⇤p)
,

which ends up being the right hand side in Eq. (7) because E[Z1] =

p(Nt �Ne
t ) by the definition of Z1 and Ne

t .

Algorithm 1 SEISMIC: Predict final cascade size
Purpose: For a given post at time t, predict its final reshare count
Input: Post resharing information: ti and ni for i = 0, . . . , Rt.
Algorithm:
Nt = 0, Ne

t = 0
for i = 0, . . . , Rt do

Nt += ni

Ne
t += ni

R t

ti
�(s� ti)ds (Sec. 3.1)

end for
ˆR1(t) = Rt + ↵tp̂t(Nt �Ne

t )/(1� �tp̂tn⇤) (Alg. 2)
Deliver: ˆR1(t)

Next, consider the case where p = p̂t � 1/n⇤. In this regime,
the point process is supercritical and stays explosive. In terms of
the Galton-Watson tree discussed above, the offspring expectation
µ = n ⇤ p � 1, so E[Zk+1] � E[Zk] � · · · � E[Z1]. Therefore
the total future reshares

P1
k=1 Zk has infinite expectation and the

final reshare count cannot be reliably predicted.

Note that Prop. 4.1 assumes that the post infectiousness remains
constant in the future (ps = pt for s � t), which could be unre-
alistic for some information cascades. We correct this by changing
the prediction formula in Eq. (7) by adding two scaling constants
↵t, �t that adjust the final prediction:

ˆR1(t) = Rt + ↵t
p̂t(Nt �Ne

t )

1� �tp̂tn⇤
, 0 < ↵t, �t < 1 . (8)

We introduce these correction factors based on the following intu-
ition. We expect ↵t to decrease over time t so it scales down the
estimated infectiousness in the future, which accounts for the post
getting stale and outdated. Similarly, �t accounts for the overlap
in the neighborhoods of reposters’ followers. Over time as the post
spreads farther in the network, we expect �t to increase as more
nodes get exposed multiple times, which means the arrival rate of
new nodes (previously unexposed nodes) decreases over time.

We use the same values of ↵t and �t for all posts but allow them
to vary over time. The values of ↵t and �t are selected to mini-
mized median Absolute Percentage Error (refer to Section 5.4 for
definition) on a training data set. As described in Section 5.2, we
find ↵t is more important than �t in practice.

4.3 The SEISMIC algorithm
Last, we put together all the components described so far and

synthesize them in the SEISMIC algorithm. The SEISMIC algorithm
for predicting ˆR1(t) is described in Algorithm 1, which uses the
algorithm for computing p̂t (Algorithm 2) as a subroutine. These
algorithms are based on Eqs. (5) and (8). We assume parameters
Kt(s), ↵t, �t, n⇤ are given a priori or estimated from the data.

Computational complexity of SEISMIC. For any choice of �(s)
and Kt(s), the computational cost of SEISMIC is O(Rt) for both
calculating p̂t and predicting ˆR1(t). Of course, the actual comput-
ing time depends heavily on the integration

R t

ti
Kt(t�s)�(s�ti)ds

and
R t

ti
�(s � ti)ds. However, the overall computational cost of

SEISMIC is linear in the observed number of reshares Rt of a given
post by time t.

The linear time complexity is in part also due to the shape of our
memory kernel. In Section 5.2 we will estimate the memory kernel
�(s) for Twitter to have the following form (for some s0 > 0):

�(s) =

(
c if 0 < s  s0,

c(s/s0)
�(1+✓) if s > s0.

(9)

Final popularity: R1 = Rt +
P1

k=1 Zk

Zk = kth g
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Figure 1: First 6 hours of retweeting activity of a popular
tweet [1] (top). The controversial tweet is about the fresh death
of dictator Muammar Gaddafi and mentions singer Justin
Bieber. Interestingly, the car manufacturer Chevrolet Twitter
account inappropriately retweeted the tweet about 30 minutes
after the original tweet, which possibly lead to tweet’s sustained
popularity. Tweet infectiousness against time as estimated by
SEISMIC (middle). Predictions of the tweet’s final retweet count
(denoted as “Truth”) as a function of time (bottom). We com-
pare SEISMIC with time series linear regression (LR), “Ob-
served” plots the cumulative number of observed retweets by a
given time. Notice SEISMIC quickly finds an accurate estimate
of the tweet’s final retweet count.

Moreover, our model is able to identify at each time point whether
the cascade is in the supercritical or subcritical state, based on
whether its infectiousness is above or below a critical threshold.
A cascade in the supercritical state is going through an “explosion”
period and its final size cannot be predicted accurately at the cur-
rent time. On the contrary, a cascade is tractable if it is in subcriti-
cal state. In this case, we are able to predict its ultimate popularity
accurately by modeling the future cascading behavior by a Galton-
Watson tree.

Our SEISMIC approach makes several contributions:
• Generative model: SEISMIC imposes no parametric assump-

tions and requires no expensive feature engineering. More-
over, as complete social network structure may be hard to ob-
tain, SEISMIC assumes minimal knowledge of the network:

The only required input is the time history of reshares and
the degrees of the resharing nodes.

• Scalable computation: Making a prediction using SEISMIC
only requires computational time linear in the number of ob-
served reshares. Since predictions for individual posts can be
made independently, our algorithm can also be easily paral-
lelized.

• Ease of interpretation: For an individual cascade, the model
synthesizes all its past history into a single infectiousness pa-
rameter. This infectiousness parameter holds a clear mean-
ing, and can serve as input to other applications.

We evaluate SEISMIC on one month of complete Twitter data,
where users post tweets which others can then reshare by retweet-
ing them. We demonstrate that SEISMIC is able to predict the fi-
nal retweet count of a given tweet with 30% better accuracy than
the state-of-the-art approaches (e.g., [12]). For reasonably popu-
lar tweets, our model achieves 15% relative error in predicting the
final retweet count after observing the tweet for 1 hour, and 25%
error after observing the tweet for just 10 minutes. Moreover, we
also demonstrate how SEISMIC is able to identify tweets that will
go “viral” and be among the most popular tweets in the future. By
maintaining a dynamic list of 500 tweets over time, we are able to
identify 78 of the 100 most reshared tweets and 281 of the 500 most
reshared tweets in just 10 minutes after they are posted.

The rest of the paper is organized as follows: Section 2 sur-
veys the related work. Section 3 describes SEISMIC, and Section 4
shows how the model can be used to predict the final size of an
information cascade. We evaluate our method and compare its per-
formance with a number of baselines as well as state-of-the-art ap-
proaches in Section 5. Last, in Section 6, we conclude and discuss
future research directions.

2. RELATED WORK
The study of information cascades is a rich and active field [27].

Recent models for predicting size of information cascades are gen-
erally characterized by two types of approaches, feature based meth-
ods and point process based methods.

Feature based methods first extract an exhaustive list of poten-
tially relevant features, including content features, original poster
features, network structural features, and temporal features [6]. Then
different learning algorithms are applied, such as simple regression
models [2, 6], probabilistic collaborative filtering [35], regression
trees [3], content-based models [24], and passive-aggressive algo-
rithms [26]. There are several issues with such approaches: labori-
ous feature engineering and extensive training are crucial for their
success, and the performance is highly sensitive to the quality of
the features [4, 30]. Such approaches also have limited applicabil-
ity because they cannot be used in real-time online settings—given
the massive amount of posts being produced every second, it is
practically impossible to extract all the necessary features for every
post and then apply complicated prediction rules. In contrast, SEIS-
MIC requires no feature engineering and results in an efficiently
computable formula that allows it to predict the final popularity of
millions of posts as they are spreading through the network.

The second type of approach is based on point processes, which
directly models the formation of an information cascade in a net-
work. Such models were mostly developed for the complementary
problem of network inference, where one observes a number of in-
formation cascades and tries to infer the structure of the underlying
network over which the cascades propagated [8, 10, 13, 14, 15, 18,
33, 36]. These methods have been successfully applied to study the
spread of memes on the web [10, 14, 32, 33] as well as hashtags on
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