
Analyzing Topic Transitions in Text-based Social
Cascades using Dual-Network Hawkes Process

Srikanta Bedathur1, Indrajit Bhattacharya2, Jayesh Choudhari3, and Anirban
Dasgupta4

1 Indian Institute of Technology Delhi, India
srikanta.bedathur@gmail.com

2 TCS Research and Innovation Labs, Kolkata, India
indrajitb@gmail.com

3 University of Warwick, UK
choudhari.jayesh@alumni.iitgn.ac.in

4 Indian Institute of Technology Gandhinagar, India
anirbandg@iitgn.ac.in

Abstract. We address the problem of modeling bursty diffusion of text-
based events over a social network of user nodes. The purpose is to
recover, disentangle and analyze overlapping social conversations from
the perspective of user-topic preferences, user-user connection strengths
and, importantly, topic transitions. For this, we propose a Dual-Network
Hawkes Process (DNHP), which executes over a graph whose nodes are
user-topic pairs, and closeness of nodes is captured using topic-topic,
user-user, and user-topic interactions. No existing Hawkes Process model
captures such multiple interactions simultaneously. Additionally, unlike
existing Hawkes Process based models, where event times are generated
first, and event topics are conditioned on the event times, the DNHP
is more faithful to the underlying social process by making the event
times depend on interacting (user, topic) pairs. We develop a Gibbs
sampling algorithm for estimating the three network parameters that
allows evidence to flow between the parameter spaces. Using experiments
over large real collection of tweets by US politicians, we show that the
DNHP generalizes better than state of the art models, and also provides
interesting insights about user and topic transitions.

1 Introduction

We address the problem of modeling text-based information cascades, generated
over a social network. Observed data on social media is a tangle of multiple
overlapping conversations, each propagating from users to their connections,
with the rate depending on connection strengths between the users and the
conversation topics. The individual conversations, their paths and topics are not
directly observed and needs to be recovered. Additionally, individual conversations
involve topic shifts, according to the preferences of the users [1]. Our goal is
to analyze the user connection strengths, their topic preferences, and the topic-
transition patterns from such social conversations.
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There exists a number of models that uses a variety of Hawkes Processes
to model such cascades [9,8,1]. None of these satisfactorily capture user-user,
user-topic and topic-topic interactions simultaneously. Additionally, in these
models, the content does not influence the response rate. This is a significant
disconnect with the underlying social process, where the rate of response for a
user depends on the user and topic of the ‘parent’ post, as well as the (possibly
different) topic that triggers for the responding user. As a result, two related
and important questions are yet unexplored– (1) how to decompose the overall
responsiveness for a pair of users and a pair of topics, and (2) how to incorporate
the influence of topics on the event rate?. For example, in the US context, our
model should be able to capture a higher response rate for a user passionate
about healthcare engaging with another passionate about politics, than for the
same user engaging with another talking about gun violence.

In this paper, we address these two issues by extending the Network Hawkes
Process [9] which executes over a one-dimensional network over users, to propose
a Dual-Network Hawkes Process (DNHP) which unfolds over a two-dimensional
space of user-topic pairs. Individual events now trigger for a user-topic pair.
Each such event spawns a new Poisson process for every other user-topic pair in
the neighborhood, whose rate is determined by the two (user, topic) pairs. For
tractability and generalization, we decompose this 4-dimensional interaction into
three interaction matrices. These represent the connection strengths between (a)
the pair of users, (b) the pair of topics, and (c) the responding user-topic pair. This
decomposition leads to significant parameter sharing between individual point
processes. Thus in addition to being closer to the generation of real-life topical
information cascades, the Multi-Network Hawkes Process promises significantly
better generalization based on limited training data via parameter sharing.

Using the model, we address the task of recovering the user-user, user-topic
and topic-topic connection strengths, along with recovering the latent topic and
parent (or trigger) event for each event. A significant challenge for parameter
estimation is that the user-user and topic-topic weights are intrinsically coupled
in our model and cannot be integrated out analytically. We address the coupling
issue by showing that the posterior distribution of the user-user (topic-topic)
weights is conditionally Gamma distributed given the topic-topic (user-user)
weights. Based on the conditional distributions, we propose a Gibbs sampling
based inference algorithm for these tasks. In our inference algorithm, the update
equations for the user-user and topic-topic weights become coupled, thereby
allowing the flow of evidence between them.

We perform extensive experiments over a large real collection of tweets by
US politicians. We show that by being more faithful to the underlying process,
or model generalizes much better over held-out tweets compared to state of the
art baselines. Further, we report revealing insights involving users groups, topics
and their interactions, demonstrating the analytical abilities of our model.
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Fig. 1. Illustration of DNHP event generation process

2 Dual-Network Hawkes Process

We consider text based cascades generated by a set of users U = {1, 2, . . . , n},
connected by edges E . Each edge (u, v) has weight Wu,v, which indicates the
extent of the influence of user u on user v. We assume that the unweighted graph
over the users is known or observed but the weights Wu,v are not. Let E = {e}
be the set of all events, which may be tweets or social media posts, created by the
users U . The example in Fig.2 shows a toy collection of 5 events. Each event e is
defined as a tuple e = (te, ce, de, ηe, ze), where, te is the time at which event was
created, ce ∈ U , is the user who created this event. We assume that each event is
triggered by a unique parent event. Let ze ∈ E indicate the parent event of e.
Events which are triggered by some other event are termed as diffusion events,
and events that happen on their own are termed as spontaneous events. In the
example, the first event posted by U1 at time t1 is a spontaneous event with
no parent, while the others are diffusion events. For the other events, parents
are indicated by arrows. The second event posted by user U4 at time t2, and
third event posted by user U3 at time t3 have the first event as their parent,
the fourth event posted by user U5 at time t4 has the second event as parent
and so on. Notice that the diffusion events leads to the formation of cascades,
and the spontaneous events represent the start of the cascade. A cascade starts
with a spontaneous event, which triggers diffusion events, which trigger further
diffusion events, leading to a cascade. In this example, the event at time t1 is the
spontaneous event, and the others are diffusion events.

We use de to denote the textual content associated with event e. Let V denote
the vocabulary of the textual content of all events, i.e. de ⊂ V . We assume
that de corresponds to a topic ηe. Following [1,2] and unlike [8], we model ηe
as discrete variable, indexing into a component of a mixture model, which is
more appropriate for short texts. Accordingly, ηe ∈ [K], where K denotes the
number of topics. In our example, we have three topics. The first and second
events are on topic T1, the third and fifth on topic T2, and the fourth on topic
T3. For any event e, all the events e′ such that te′ < te and ce′ ∈ N (ce), where
N (ce) denote the set of neighbors of ce in the user-user graph, are the set of
candidate parent event. Additionally, as similar to that of the HMHP model [1],
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which posits the existence of the a topic-topic interaction matrix, here as well
we consider the existence of the topic-topic graph over the set of nodes [K]. The
topic-topic graph as well as the topic-topic interaction strengths Tk,k′ for every
pair of topics k, k′ ∈ [K] are unobserved. The topic-topic interaction strength
between a pair of topics represents how quickly the conversations transit over
these topics.

Hawkes processes[7,11] have been variously used to model such cascade events
[1,8,9]. In all of these models, a Hawkes Process executes over a network of user
nodes. Specifically, each event on a user node u triggers a Poisson Process on all
neighboring nodes v, with a rate that is parameterized by the connection strength
between u and v. In essence, the topics do not play a role in the Hawkes process
itself. We deviate fundamentally from this by defining a super-graph G, where
each super-node corresponds to a user-topic pair (u, k), u ∈ U, k ∈ [K]. The
Hawkes Process now executes on this super-graph. This is also illustrated in Fig.
1. Specifically, each event happens on a super-node (u, v), and spawns a Poisson
Process on each ‘neighboring’ super-node (v, k′). In the example, according to
the super-node representation, the first event happens at (U1, T1), the second
at (U4, T1) and so on. Each event spans events on each neighboring super-node.
We define two super-nodes to be neighbors is there corresponding users are
neighbors in the social graph. The graph in Fig.2(a) shows the social graph for
our example. As a result of this, the first event at (U1, T1) will trigger Poisson
Processes at super-nodes with users U2 (i.e. (U2, T1), (U2, T2), (U2, T3)), U3
(i.e. (U3, T1), (U3, T2), (U3, T3)), and U4 (i.e. (U4, T1), (U4, T2), (U4, T3)). The
rate of each Poisson Process, for example that triggered (U4, T1), is determined
by the ‘closeness’ of the super-node pair. We discuss this in more detail later in
this section. We call this the Dual-Network Hawkes Process (DNHP), because the
process executes on a two-dimensional network, unlike those based on the Network
Hawkes Process which have a one-dimensional network. Once the DNHP has
generated events until some time horizon T , the textual content de of each event
at super-node (ce, ηe) is generated independently according to the distribution
associated with its topic ηe. We first describe the generation of the super-node
(ce, ηe) and time te of each event, and then that of the textual content de.

2.1 Modeling Time and Topic

In this phase, the time te, user ce, parent ze, and topic ze) for each event is
generated using the Multivariate Hawkes Process (MHP) on graph G. We follow
the general process of existing models [12,9,8,1], but replace user nodes with
user-topic super-nodes. In the following, when we refer to a pair (u, k), we will
assume u ∈ U , and k ∈ [K].

Let Ht− denote the set of all events generated prior to time t. Then, following
the definition of the Hawkes Process, the intensity function λ(v,k)(t) for super-
node (v, k) is given by the superposition of the base intensity µ(v,k)(t) of (v, k)
and the impulse responses of historical events e ∈ Ht− at super-nodes (ce, ηe) at
time te: λ(v,k)(t) = µ(v,k)(t)+

∑
e∈Ht−

h(ce,ηe),(v,k) (t− te). The base intensity for
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Fig. 2. Illustration of DNHP Model Parameters

node (v, k) is defined as µ(v,k)(t) = µv(t)× µk(t), where, µv(t) is base intensity
associated with user v, and µk(t) is the base intensity for topic k.

In the context of super-nodes, the parameterization of the impulse response
h(u,k),(v,k′) becomes a challenge. The naive 4-dimensional parameterization is
unlikely to have enough data for confident estimation, while complete factorization
with four 1-dimensional parameters is overly biased. We propose its decomposition
into three factors:

h(u,k),(v,k′)(∆t) =Wu,vTk,k′Qv,k′f(∆t) (1)

These three factors form the parameters of our model. Here, Wu,v captures
user-user preference, Tk,k′ captures topic-topic interaction, and Qu,k user-topic
preference. We believe that this captures the most important interactions in the
data, while providing generalization ability.

Fig. 2 illustrates this parameterization. Fig. 2(a) shows parameter Wu,v. User
pairs (U3, U5) have the strongest connection, indicating the U5 responds to U3
with the quickest rate, followed by (U4, U5), etc. Note that this parameterization
is directional. Fig. 2(b) shows parameter Q,uk. Here, (U1, T1) has the strongest
connection, indicating that user U1 posts on topic T1 with the quickest rate,
followed by the others. Fig. 2(c) shows parameter T,kk′. This shows that topic
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transitions happen from T1 to T2 with the quickest rate, while those from T2 to
T3 happen much slower. Note that this parameter is also directional. The overall
rate of the process induced at (U2, T1) by the event at (U1, T1) is determined
by the product of the factors WU1,U2, QU2,T1 and TT1,T1.

Finally, f(∆t) is the time-kernel term. We model the time-kernel term f(∆t)
using a simple exponential function i.e. exp(∆t).

To generate events with the intensity function λ(u,k)(t), we follow the level-
wise generation of events [12]. Let, Π0 be the level 0 events which are generated
with the base intensity of the nodes (v, k) ∈ G, i.e. µ(u,k)(t). In our example,
this generates the first event (U1, T1) with time-stamp t1. Then, the events at
level ` > 0 are at each super-node (u′, k′) are generated as per the following
non-homogeneous Poisson process:

Π` ∼ Poisson

 ∑
(te,(ce,ηe),ze)∈Π`−1

h(ce,η),(u′,k′) (t− te)

 (2)

Influencing happens only on neighboring super-nodes (u′, k′) for (ce, ηe), e ∈
Π`−1. Recall that two super-nodes (u, k) and (u′, k′) are neighbors if the cor-
responding users u and u′ are neighbors in the social network. Imagine our
example set of events in Fig.1 being generated using the parameterization in
Fig.2 according to the level-wise generation process. Here, Π0 = {(U1, T1, t1)},
Π1 = {(U4, T1, t2), (U3, T2, t3)}, and Π2 = {(U5, T3, t4), (U5, T2, t5)}.

We would like to highlight the reader that in this work we model the time-
kernel term f(∆t) using a simple exponential function i.e. exp(∆t). We understand
that there has been a number of recent works that model the time-kernel efficiently
([8], [2], [9]), but the main aim of this work is not that.

2.2 Modeling Documents

Once the events are generated on super-nodes, generation of each document de
for event e happens conditioned only on the topic ηe of the super-node, using a
distribution over words ζηe specific to topic ηe. In our example process, each of
the three topics T1, T2 and T3 have their corresponding distribution over words,
denoted at ζT1, ζT2 and ζT3 respectively. The words in the first and second
events are generated i.i.d. from ζT1, those in the third event from ζT2, and so on.

The complete generative process for the DNHP is described using a pseudo-
code in Algorithm 1.

2.3 Stability of DNHP

One of the important properties of the Hawkes processes which makes it a perfect
fit for cascades of social media events is the mutually exciting property. Each
historical event adds a non-negative impulse response to the intensity function,
and thus increases the likelihood of the future events. Because of this recurrent
nature of the Hawkes processes, we need to ensure that the generative process
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Algorithm 1 DNHP Generative Model
1: for all u ∈ U do
2: for all v ∈ Nu do . User-User Influence
3: Sample Wu,v ∼ Gamma(α′

1, β
′
2)

4: for all k ∈ [K] do . User-Topic Preference
5: Sample Qu,k ∼ Gamma(α′

3, β
′
3)

6: for all k ∈ [K] do
7: Sample ζk ∼ DirichletK(α) . Topic-word Distribution
8: for all k′ ∈ [K] do . Topic-Topic Interaction
9: Sample Tk,k′ ∼ Gamma(α′

2, β
′
2)

10: Generate (te, (ce, ηe), ze) for each event as described in section 2.1 (under Modeling
Time and Topic)

11: for all e ∈ E do
12: Sample Nde ∼ Poisson(λ) . #words to sample
13: Sample Nde words from ζηe

does not lead to a generation of infinite number of events within a finite time
horizon. Here, we claim that the DNHP as defined above is stable in this sense.

Lemma 1. To ensure that DNHP does not generate infinite number of events it
is sufficient to ensure that λmax(A�W ) < 1, λmax(B�T ) < 1, and λmax(Q) < 1
where, λmax denotes highest eigenvalue, A and B are the adjacency matrices for
the user-user and topic-topic graphs respectively, and W , T , and Q define the
user-user influence, topic-topic interaction, and user-topic preference matrices
respectively.

The proof for this is on the similar lines as that of the Network Hawkes
process [9].

3 Approximate Posterior Inference

The latent variables associated with each event in case of DNHP are the parent
of the event (ze), and the topic of the event (ηe). The variable ze for each event
e can be either 0 indicating a spontaneous event or some event e′ in the history
of event. Along with these latent variables, the model parameters, namely, the
user-user influence matrix W , the user-topic preference matrix Qu,k, the topic-
topic interaction matrix T , and base rates for each user and each topic need to
be estimated.

As the exact inference is intractable, we perform inference using the Gibbs
sampling algorithm. The topic-topic interaction strengths Tk,k′ are tightly coupled
with the user-user influence Wu,v terms in the likelihood, and as a result cannot
be integrated out analytically. However, we can show that the joint distribution
is analytically troublesome, the conditional distributions for the parameters given
the other parameters have a nicer form. The posterior distributions for each of
the three parameters Wu,v, Qv,k′ , and Tk,k′ are Gamma distributed conditioned
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on the other two. Additionally, the posterior distributions for the topic (ηe) and
parent (ze) for each event are categorical conditioned on the parameters. This
naturally leads to a sampling based iterative inference algorithm. Specifically, in
each step, we use Gibbs sampling to sample the individual topic assignments (ηe),
parent assignments (ze), the user-user influence Wu,v, the topic-topic interaction
strengths Tk,k′ , user-base rate µv for each user and topic-base rate µk for each
topic from their conditional distributions, given current assignments to all other
variables. This iterative algorithm is continued until convergence. Following are
the conditional distributions for the different latent variables, which are used in
each step of the Gibbs sampling algorithm.

3.1 Parent Inference

The conditional probability of event e′ = (te′ , (u, k
′), ze′) being a parent of an

event e = (te, (v, k), ze) is given as:

P (ze = e′|W, T , Q) ∝ exp(−Wu,vTk′,kQv,k)Wu,vTk′,kf(∆te) (3)

Note that this depends on the association strengths between the corresponding
users u and v, the corresponding topics k and k′, and the time lag ∆te between
the events. On the other hand, the conditional probability of an event being
spontaneous is given as:

P (ze = e|µv, µk, T ) ∝ exp(−Tµvµk)µvµk (4)

Note that this depends on the base rates of the user µv and the topic µk.

3.2 Topic Assignment

The conditional probability of assigning a topic k to an event e by user v with
the parent event e′ = (te′ , (u, k

′), ze′) is given as:

P (ηe = k|z,W, T ,α) ∝
∏
w∈de

∏Nw−1
de

i=0 αw + T¬ek,w + i∏Nde−1
i=0

∑
w∈V αw + T¬ek + i

× exp (−Wu,vTk′,kQv,k) Tk′,kQv,k

×
∏
h∈E
zh=e

[exp (−Wv,chTk,ηhQch,ηh) Tk,ηh ]

(5)

Here, T is the count matrix of dimension K × V storing the count of each word
for each topic. T¬ek,w indicates the count of word w in topic k excluding the counts
from event e. Note that the first term considers the likelihood of the document
de for the event coming from topic k, the second considers the probability of user
v posting on topic k following parent event topic k′, and the third term considers
the various child event of this event posting on their own topics following topic k.
When event e is a spontaneous event, the conditional probability has a similar
form, with only the second term changing to exp(−µvµkT )µvµk, indicating the
probability of generation of an spontaneous event with topic k.
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3.3 User-User Influence (Wu,v)

The conditional probability of influence of user u on v is given as:

P (Wu,v|T ,Q, z) ∝ P (Wu,v|α′1, β′1)× C ′ ×Wα1
u,v exp(−β1Wu,v) (6)

The first term results from a Gamma prior on Wu,v, and C ′ being a constant
independent of Wu,v. Also, Nu,v denotes number of times an event at u triggered
event at v, and Nu,k denotes the number of events of topic k by user u. We
recognize this form as that of the Gamma distribution. Specifically, Wu,v is
Gamma

(
α(W ), β(W )

)
distributed with parameters α(W ) = α1 + α′1, and β(W ) =

β1 + β′1, where,

α1 =
∑
k

∑
k′

N(u,k),(v,k′) = Nu,v β1 =
∑
k

N(u,k)

∑
k′

(Tk,k′Qv,k′)

C ′ =
∏
k

∏
k′

(Tk,k′Qv,k′)N(u,k)(v,k′)

Note the dependence of β1 on the current values of all Tk,k′ and all Qv,k′ .

3.4 Topic-Topic Interaction (Tk,k′)

The conditional probability of interaction between topics k and k′ is given as:

P (Tk,k′ |W,Q, z) ∝ P (Tk,k′ |α′2, β′2)× C ′ × T
α2

k,k′ exp(−β2Tk,k′) (7)

Again, the first term is a Gamma prior on T , and the term C ′ which is a constant
independent of T . Nk,k′ is the number of times an event with topic k triggered
an event with topic k′. Therefore, Tk,k′ is again Gamma(α(T ), β(T )) distributed
with parameters α(T ) = α2 + α′2, and β(T ) = β2 + β′2, where,

α2 =
∑
u

∑
v

N(u,k),(v,k′) = Nk,k′ β2 =
∑
u

N(u,k)

∑
v

(Wu,vQv,k′)

C ′ =
∏
u

∏
v

(Wu,vQv,k′)
N(u,k)(v,k′)

Again, note the dependence of β2 on the current values of all Wu,v and all Qv,k′ .

3.5 User-Topic Preference (Qv,k′)

The conditional probability of user v’s preference towards topic k′ is given as:

P (Qv,k′ |W, T , z) ∝ P (Qv,k′ |α′3, β′3)× C ′Q
α3

v,k′ exp(−β3Qv,k′) (8)

Therefore, Qv,k′ is Gamma(α(Q), β(Q)) distributed with parameters α(Q) =
α3 + α′3, and β(Q) = β3 + β′3. Here,

α3 =
∑

u∈N (v)

∑
k

N(u,k)(v,k′) β3 =
∑

u∈N (v)

∑
k

N(u,k)(Wu,vTk,k′)

C ′ =
∏
u

∏
k

(Wu,vTk,k′)N(u,k)(v,k′)

This again depends on the current values of all (Wu,v and all Tk,k′).
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3.6 Base Rate Inference

The estimates for user base rate µv ∀v ∈ U and topic base rates µk ∀k ∈ K are
given as:

µv =
N

(spon)
v

T
∑
k∈K

µk
µk =

N
(spon)
k

T
∑
v∈V

µv
(9)

where, N (spon)
v is the number of spontaneous events by user v, N (spon)

k is the
number of spontaneous events that have topic k, and T is total time for which
the events are observed.

The complete inference algorithm for DNHP is given below.

Algorithm 2 Approximate Inference - Gibbs Sampling
1: Initialize ηe, ze for all events
2: for i ∈ {1 . . .maxIter} do
3: for all e ∈ E do
4: Sample ηe using Eq. 5 . Topic
5: Sample ze using Eq. 3 . Parent
6: for all (u, v) ∈ E do
7: Sample Wu,v using Eq. 6 . User-User influence
8: for all (k, k′) ∈ ([K]× [K]) do
9: Sample Tk,k′ using Eq. 7 . Topic-Topic interaction
10: for all (v, k′) ∈ (U ×K) do
11: Sample Qv,k′ using Eq. 8 . User-Topic preference
12: for all u ∈ U do
13: Estimate µu . User base intensity
14: for all k ∈ [K] do
15: Estimate µk . Topic base intensity

The number of parameters to infer per iteration is O(|E|+ |E|+ |E|+ (K2) +
(|U | × K)), where |E| is the total number of events, and |E| is the number
of edges in user-user graph, and K is the number of topics. This is of the
same order as that of competing models [1] that consider topic transitions. The
additional parameters in DNHP correspond to the matrices T and Q respectively.
However, inference of these additional terms serves an important purpose in
DNHP. Note the interdependence between the user-user influence and the topic-
topic interaction in the inference equations - one directly influences the other. In
fact, different user-user weights influence each other via topic-topic weights and
user-topic preferences. This results in more efficient sharing of evidence across
different user-user, user-topic and topic-topic weights. In contrast, user-user and
topic-topic weights in HMHP and user-user weights in Network Hawkes model
are conditionally independent given the event parents, and as a result cannot
reinforce each other.
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4 Experiments and Results

In this section we validate the strengths of DNHP empirically. We first describe
the models with which we compare the performance of DNHP. We then describe
the datasets and define the tasks for these models to address. All the experiments
are performed on a machine with 32 cores, 2.10GHz Intel(R) Xeon(R) E5-2620
CPU, and 256 GB RAM.

4.1 Models Evaluated

We compare the performances of the following models on the datasets described
in section 4.2 with respect to the tasks defined in section 4.3.

1. HMHP: HMHP [1] is a model for the generation of text-based cascades.
HMHP incorporates user temporal dynamics, user-topic preferences, user-user
influence, along with topical interactions. However, in HMHP, similar to the
other models in the literature, for eg. [7], [12], [9] and [8], the generation of
time stamp of an event is independent of the topic associated with the event.
Additionally, HMHP does not capture user-topic preferences. We evaluate and
compare the performance of HMHP with DNHP based on the generalization
on real data and reconstruction performance on synthetic data.

2. NHWKS & NHLDA: Network Hawkes [9] jointly models event time stamps
and the user-user network strengths. This model infers user-user influence
and also the parent event for each event. As opposed to HMHP and DNHP,
NHWKS does not model text content. Therefore, to we define a simple
extension of NHWKS that additionally generated topic labels and content
for events, following up on the NHWKS generative process. Specifically, we
use an LDA mixture model, that assigns a topic to each event by sampling
from a prior categorical distribution, and then draws the words of that event
i.i.d by sampling from the word-distribution specific to that topic. We call
this Network Hawkes LDA (NHLDA).

3. DNHP: This is our model with Gibbs sampling based inference algorithm.
Here, as for HMHP, the topic-topic graph is considered as a complete graph
and the weights over all the edges have the same prior.

4.2 Datasets

We evaluate the performance of the above mentioned models on the following
two datasets:

1. Real dataset: The dataset that we consider here, denoted as USPol (US
Politics Twitter Dataset), is a set of roughly 370K tweets extracted for 151
users who are members of the US Congress5. The tweets were extracted in
July 2018 using the Twitter API. Each tweet in the dataset consists of time
stamp, the user-id, and the tweet-text(content). The total vocabulary size

5 https://bit.ly/2ufvRWR
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here is roughly 33k after removing rare tokens. Ground truth information
about parent events is not available for this dataset. Also, we do not consider
retweets explicitly. Note that retweets have same topic as that of the original
tweet, and retweets form only a small fraction of the parent-child relations
that we intend to infer.

2. Semi-Synthetic Dataset: As for the USPol dataset the gold standard for
topics and parents is not available, we also generate a semi-synthetic dataset
using the DNHP generative model, with the same user-user graph as USPol.
This dataset, that we call SynthUSPol is generated by first sampling the
user-user influence and topic-topic interactions matrices from Gamma priors.
For all u ∈ U and k ∈ [K], µu = µk = 0.003. Here, K = 25, |V | = 5000,
and the topic-word distributions are sampled from Dirichlet(0.01). For each
event e, the number of words in document de is sampled from a Poisson
distribution with mean 10 to mimic tweets. Using this configuration, we
generate 3 different samples of roughly 370K events each. For this dataset,
due to space constraints, we only report parent identification performance in
Table 1. Note that the user-user weight estimates depend directly and only
on the identified parents.

4.3 Evaluation Tasks and Results

In this section we evaluate the models based on the (A) Cascade Reconstruction,
and (B) Generalization performances.

(A) Cascade Reconstruction Performance : For the parent identification
task the evaluation metrics used are the accuracy and the recall. Accuracy is
defined as the percentage of events for which the correct parent is identified. And,
given a ranked list of the predicted parents for each event, recall is calculated by
considering the top 1, 3, 5 and 7 predicted parents.

(B) Generalization Performance : We compare the performance of the
models using Log-Likelihood (LL) of the held-out test set. We perform this task
on the semi-synthetic dataset SynthUSPol and also on the real dataset USPol. For
each event e in the Test set the observed variables are the time te, the creator-id
ce, and the words/content de, while the parent ze and the topic ηe are latent.

The calculation of the loglikelihood of the test data involves a significant
computational challenge. Let X and Y denote the set of events in the Train and
Test sets respectively. As per DNHP, the total log-likelihood LL(DNHP ) of the
test set Y is given as:

LL(DNHP ) =
∑
e∈Y

(logP (te, ce, we))

=
∑
e∈Y

∑
e′∈E

ce∈N (ce′ )
te′<te

∑
ηe′

∑
ηe

(
exp(−Wce′ ,ceTηe′ ,ηeQce,ηe) × Wce′ ,ceTηe′ ,ηeQce,ηe exp(∆te)

)
× P (we|ηe)+

∑
ηe

exp(−µceµηeT )µceµηe × P (we|ηe)

(10)
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Here, the summations over e′ ∈ E, over ηe′ , and over ηe are for the marginalization
over the candidate set of parents, topic of parent event, and topic of event e
respectively.

Similarly, for HMHP it is given as:

LL(HMHP ) =
∑
e∈Y

log(P (te, ce, we))

=
∑
e∈Y

∑
e′∈E

ce∈N (ce′ )
te′<te

∑
ηe′

∑
ηe

(
exp(−Wce′ ,ce)Wce′ ,ce × exp(∆te)Tηe′ ,ηe × P (we|ηe)

)
+

∑
ηe

exp(−µceT )µceUce,ηe × P (we|ηe)

(11)

As opposed to DNHP, in HMHP, Tηe′ ,ηe is probability of transition from topic
ηe′ to topic ηe, and thus for a fixed ηe′ , we have

∑
k Tηe′ ,k = 1. HMHP also has

users topic preference probability Uce,ηe , and for a fixed user ce,
∑
k Uce,k = 1.

In general, when the candidate parents are not in the training set, the parent
event also has latent variables. Observe the summation over candidate parent’s
topic ηe′ in Equations 10 and 11. Therefore, calculating LL for all the events
e ∈ Y involves recursively enumerating and summing over over all possible test
cascades. We avoid this summation by assuming that the parent event for each
test event is in the training set, and create our test sets accordingly.

For the semi-synthetic dataset SynthUSPol, this is simple, since the dataset
is generated according to DNHP and we know the actual cascades. We use this
level information from the SynthUSPol dataset to classify the events into Train
and Test sets. We take the events at a specific level as the Test set, and the
events at all previous levels as the Train set. However, for the real dataset USPol,
the true cascade structure is unknown. So we use some heuristics to ensure that
the events in the Test set are very likely to have parents in the Train set. We
also design controls for the Test set size. We process events sequentially. Each
event e ∈ E is added to the Test set Y if and only if at most ptest fraction of
its candidate parents are already in the Test set Y. This ensures that 1− ptest
fraction of its candidate parents are still in the Train set X . Note that increasing
(decreasing) ptest results in increasing (decreasing) the test set size, and decreasing
(increasing) the train set size. To study the effects of increasing training data
size without reducing the test size, we use an additional parameter 0 ≤ pdata ≤ 1
to decide whether to include an event in our experiments at all. Specifically, we
first randomly include each event in the dataset with probability pdata, and then
the Train and Test split is performed.

4.4 Results

Parent Identification: Table 1 presents the results for this task. Each result
presented here is an average over 5 samples of the generated dataset. For both the



14 BBCD ’20.

Table 1. Parent Identification performance for DMHP and HMHP on Semi-Synthetic
Dataset

Parent Identification

Accuracy Recall@1 Recall@3 Recall@5

DNHP 0.47 0.48 0.75 0.84
HMHP 0.40 0.40 0.68 0.79

Table 2. Average LL for Semi-Synthetic data

Average Log-Likelihood of Time & Content

Test On DNHP HMHP

2nd Last Level -58.66 -59.31
Last Level -57.6 -58.48

Average Log-Likelihood of Time

Test On DNHP NHWKS

2nd Last Level -2.56 -2.76
Last Level -2.32 -2.48

models, recall improves significantly as we consider more candidates predicted
parents. The accuracy and recall @ 1 for the DNHP is ∼ 20% better than that of
the HMHP model. In summary, DNHP outperforms the HMHP model with respect to
the reconstruction performance for the synthetic data.

Generalization Performance: The generalization performance for the models
is evaluated on the basis of their ability to estimate the heldout LL. This task is
addressed on both semi-synthetic (SynthUSPol) and the real (USPol) dataset.

1. SynthUSPol Dataset: Table 2 presents the heldout LL of time and content
for DNHP and HMHP, and LL of time by for DNHP and NHWKS for the SynthUSPol
dataset. The results are averaged over 3 independent samples each of size
∼ 370K The size of the Train set upto 3rd last level and upto 2nd last level
is ∼ 170K and ∼ 340K respectively. In general, with more training data, for
both models LL improves. Overall, DNHP outperforms NHWKS in explaining
the time stamps by benefiting from estimating topic-topic parameters given
the text, and in turn using those to better estimate the user-user parameters.
In the same way, by better estimating both of these parameters using coupled
updates, DNHP outperforms HMHP in explaining the time stamps and the
textual content together.

2. USPol Dataset: Table 3 presents the LL of time and content for DNHP and
HMHP, and LL of time for DNHP and NHWKS, on the USPol dataset for K = 100.
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Table 3. Average Log-Likelihood of Time+Content and Time with K = 100 for the
real dataset USPol. (The Train(Test) sizes mentioned are approximate)

ptest = 0.3

Time + Content Time

Train(Test) DNHP HMHP NHLDA DNHP NHWKS

114K(70K) -82.11 -96.51 -96.72 -8.03 -24.46
177K(100K) -79.09 -87.32 -87.63 -7.07 -16.32
240K(130K) -77.03 -80.71 -81.00 -6.34 -10.27

ptest = 0.5

Time + Content Time

Train(Test) DNHP HMHP NHLDA DNHP NHWKS

86K(98K) -83.37 -96.15 -105.56 -8.09 -23.57
133K(144K) -80.45 -87.78 -93.18 -7.21 -16.02
179K(190K) -78.27 -81.96 -85.90 -6.53 -10.90

The rows indicate the Train and Test when the events are selected with
probability pdata set as 0.5, 0.7, and 1.0 (which is the complete dataset).
Then the Train-Test split is performed with ptest set as 0.3 and 0.5, which
indicate the maximum fraction of candidate parents for each event in the
Test set.
Observe that as expected all the models, DNHP, HMHP and NHWKS, get better at
estimating the LL with the increase in the size of the dataset across different
values of ptest. However, DNHP performs better than the competitors by a
significant margin, both for time and time+content. A significant point to
note is that the gap between DNHP and the two baselines HMHP and NHWKS
is larger when the training dataset size is smaller. This agrees with our
understanding of parameter sharing leading to better generalization given
limited volumes of training data. This demonstrates that DNHP has already
learned the parameters efficiently with the smaller dataset size, using flow of
evidence between the parameters in the update equations.

4.5 Analytical Insight from USPol Dataset

In order to extract analytical insights from the USPol dataset, we first fit the
model using K = 100 topics. Each of these 100 topics were then manually
given a topic name by looking at the set of top words in the topic. For ease
of understanding, these 100 topics were further manually annotated by one
of the following 8 topics– {Politics, Climate, Social, Defence, Guns, Economy,
Healthcare, Technology, Guns}6. Henceforth we refer to these are the topics.

6 Open sourced along with the rest of the data
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A

C D

B

Fig. 3. (A)Topic-Topic Transition (
∑
u,vWu,vTk,k′Qv,k′), (B) User-User

Transition (
∑
k,k′Wu,vTk,k′Qv,k′), (C) (Source)User-(Source)Topic Emission

(
∑
v,k′Wu,vTk,k′Qv,k′), and (D) (Destination)User transiting to (Destination)Topic

(
∑
u,kWu,vTk,k′Qv,k′)

Each user was tagged as either Democrat (D) or Republican (R) (based on their
Wikipedia page).

We then extract insights by considering the set of values {WuvTk,k′Qv,k′} for
every pair of users (u, v) such that v follows u and (k, k′) is a topic-pair.

Figure 3 shows the heat-maps obtained taking various marginalizations over
the four tuple (u, k, v, k′). The heatmap in Figure 3A represents the matrix
obtained by

∑
u,vWuvTk,k′Qv,k′ , and hence estimates rate of a parent child topic

pair (k, k′). It is instructive to observe that there are off-diagonal transitions (e.g.
Politics → Social and Economy → Politics, Social → Politics) that have higher
value than some of the diagonal entries, indicating how the conversations evolve
across topics. Figure 3B indicates the aggregated user-user rates across parties
obtained by aggregating across all topic-pairs and over all users in the same party.
The heatmap clearly indicates that Democrat user have a higher aggregated
rate, irrespective of the party affiliation of the child tweet’s user. Figures 3C
and 3D show two different views of the user-topic rate, where 3C includes that
spontaneous posts too, but 3D includes only replies. Certain topics are equally
prominent in both, but there are topics (e.g. Economy, Healthcare) that a higher
rate for the reply tweets than in the source ones.

Drill-down Analysis: We then further drill down in order to identify interesting
topical interactions and parent-child tweet examples.We follow two top-down
approaches:
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1. Topics to Users Interaction: Figure 4 explains pictorially the first approach.
We start with the matrix

∑
u,vWu,vTk,k′Qv,k′ (which is a topic×topicmatrix),

and identify some asymmetric topic pairs. In Figure 4(A) the (Economy,
Healthcare) pair is chosen for drilling down further. For this selected topic-
topic pair we the find the aggregated user-user interaction rate. In the
corresponding (user × user) matrix, (obtained by fixing the topic pairs in
the set {Wu,vTk,k′Qv,k′}), we identify the cells which corresponds to users
with different affiliations. In Figure 4(B) the (Democrat, Republican) pair is
chosen. We then extract some sample interactions between these users and
present as anecdotes in Figure 4(C).

@POTUS leads with shout out 

to Earned Income and Child Tax 

Credits Sherrod helped make 

permanent for working families 

in 2015. #SOTU

POTUS continues to believe the 

false reality that the #ACA is 

living up to its promises—and 

especially for Alaskans. #SOTU

A

B
C

Fig. 4. User-User transition for a particular Topic-Topic transition

2. Users to Topics Interaction: For this case, Figure 5 explains the top-down
process that we follow. Here we start with the (user × user) matrix defined
by
∑
k,k′Wu,vTk,k′Qv,k′ (matrix in Figure 5(A)). We then follow a similar

process as in the previous case, i.e. we identify the cell which corresponds to
users with different affiliations then calculate the aggregate rate of interaction
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for all topic-pairs. This gives a (topic× topic) matrix restricted to the users
from matrix 5(A). In this topic-topic interaction matrix we again identify
dominant cells with asymmetric topics (namely, (Social, Politics) cell in
matrix in Figure 5(B)) and then identify anecdotal parent-child tweet pairs.
We note that both the (finer grained) topic assignments, as well as the relation
among the tweet-pairs looks reasonable.

On #InternationalWomensDay

we honor strong women fighting

to make our world better. Will

continue to fight for #EqualPay

#IWD2016

"Sen.Collins, @SenatorShaheen

lead bipartisan resolution

commemorating International

Women’s Day #mepolitics

#IWD2016

A

B

C

Fig. 5. Topic-Topic transition for a particular User-User transition

Finally, in Table 4, we show some additional examples of parent child tweet
pairs that correspond to different topics and also users with different political
affiliations. In each row, the topics of the tweets are annotated in bold. Observe
that the conversation transitions naturally from one topic to another. This is
difficult to capture for other state-of-the-art models.
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Table 4. Example parent-child tweet pairs with different topics and different political
affiliations for users

Parent Tweet Child Tweet
(Media) "Joined Cheryl Tan &amp; Don
Roberts on WAVY News this morning, to
discuss #Syria &amp; where I stand. Watch
here: http://t.co/BWqBl164GI"

(Foreign) #AlQueda positioned to take
#Syria if US action ousts Assad. What mes-
sage are we sending our troops? ""Fight’em
in Iraq support’em in Syria"""

(Politics) Every American should be free
to live and work according to their beliefs
w/out fear of punishment by the government
#Notmybossbusiness

(Women’s Rights) "Women’s private
health decisions are btwn her &amp; her
doctor, not her boss. #NotMyBossBusiness
http://t.co/YHRs0MybWs"

(Foreign)"Fifty years of isolating Cuba had
failed to promote democracy, setting us
back. Thats why we restored diplomatic
relations."–@POTUS #SOTU"

(Politics) "Mr. President you’ve done
enough,now it’s our time to repair the dam-
age you have done & make this country great
again#FinalSOTU #SOTU"

(House Proceedings) @POTUS delivered
vision for expanding opportunity. Let’s build
a future where anyone who works hard
&amp; plays by the rules can succeed
#SOTU

(Foreign) Would like to hear from @PO-
TUS how he plans to get our U.S. sailors
in Iranian custody back. So far....nothing.
#outoftouch

5 Related Work

Recently, there has been a spate of research work in inferring information diffusion
networks. The network reconstruction task can be based on just the event times
([5], [6], [15], [4], [13], [9]), where the content of the events is not considered.
Dirichlet Hawkes Process (DHP) [2] is one of the models that uses the content and
time information, but the tasks performed are not related to network inference
or cascade reconstruction. Similar to our model the DHP, as well is a mixture
model and assigns single topic to each event, but it does not have any notion
of parent event or topical interactions. The recent models such as HTM [8],
and HMHP [1] show that using the content information can be profitable and
can given better estimates for the network inference tasks as well the cascade
inference task. HMHP model is the closest model to our model, which considers
topical interactions as well. However, in both HMHP and HTM [8], the event
times are not conditioned on even time stamps. Instead, the topics are generated
conditioned on users and parent events.

While all of these capture interactions between users, only HMHP and HTM
captures interactions between topics. None of these models capture interactions
between users, between topics and between users and topics together.

Following a different line of research, recently there has been effort in using
Recurrent Neural Networks (RNN) to model the intensity of point processes
[3,14,10]. These look to replace pre-defined temporal decay functions with positive
functions of time that are learnt from data. So far, these have not considered
latent marks, such as topics, or topic-topic interactions.
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6 Conclusions

In this paper, we addressed the problem of reconstructing and analyzing text-based
social cascades by capturing user-topic, user-user and topic-topic interactions, by
proposing Dual-Network Hawkes process. This executes on top of a super-graph
with nodes as user-topic combinations, so that the event times are determined by
both the posting and reacting pairs of users and topics. We have shown that this
fits real social data better than state-of-the-art baselines for text-based cascades
by using a large collection of US political tweets. We have also demonstrated how
the model reveals interesting insights about social interactions at various levels
of granularity. In future, we wish to incorporate more dimensions and study the
effect of inter-dimensional flow of evidence in handling data sparsity. A concrete
outcome will be to incorporate structured prior over latent topic graph or, in
general, a structure over marks, and improve the existing knowledge-base (e.g.
DBpedia) from this cascade evidence.
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