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Abstract

Social networks, whether real ones or online services, act as important platforms for
the propagation of ideas, thoughts, innovation, rumors, infection, etc. The propagation
of information from one user to others results in the formation of information cascades.
These cascades can be thought of as conversations between the users that can be
characterized by the topics being discussed, the time at which the conversation is
going on, as well as the complex interactions (who responds to whom) between the
users involved in the conversation. In this thesis, we first propose a series of generative
models for this complex process of diffusion of information. The first model, Hidden
Markov Hawkes Process (HMHP), incorporates the interaction between the users
(influence of one user on another), users’ topical preferences and, temporal patterns
between posting and response times, as is the case with number of other models
in existing literature; the novelty of HMHP is in incorporating topical interactions.
We also propose a scalable algorithm based on Gibbs sampling that jointly infers the
strength of interactions between the users, the path of diffusion of information, the
topics of the posts, as well as the topical interactions. Experiments on synthetic data
show that HMHP can recover user-user influence, parent identification, and topic
identification more accurately as compared to the state-of-the-art baselines. More
interestingly, HMHP finds insightful interactions between topics in real tweets which
no existing model is able to do.

However, in HMHP, as well as in all the previous models in the literature, the time of
the event is dependent only on the users (and their interaction), which is not the case
in the real world. We propose the Dual Network Hawkes Process (DNHP) in which
the event rates depend on the topic (topical-interaction) in addition to the user (user-
interaction). In DNHP, in parallel to the user network, we model a network over the
topics as well, so that the events propagate over a two dimensional space indexed
by users and topics. This sets up an interaction between the two spaces, where the
estimates of user- user weights depend on topic-topic weights, and vice versa. This
resultant joint estimation of weights allows evidence to flow across weight variables.
As compared to the HMHP, DNHP is not benefited from collapsed Gibbs sampling
for the inference task. However, experiments on synthetic data show that DNHP
outperforms state of the art models in terms of parent identification, and user-user
weight estimation.



In addition to the proposed generative models, we also look at the information diffu-
sion problem from an algorithmic perspective, specifically, in the context of parame-
terized algorithms. Note that it is not always the case that we want the information
to propagate. For e.g., consider a piece of information which is a rumor or fake news,
or from the view of the epidemiology, consider an infection or a disease. In these
cases, the goal would be to prevent or at least curb the spread of the contagion. Thus,
in contrast to the previously mentioned works, which are centered towards under-
standing the propagation of information and the factors responsible for the same, the
goal here is to propose algorithms for preventing the spread of information. In this
work, we focus on the firefighting problem which formalizes the question of designing
inoculation strategies (termed as firefighters) against a contagion (termed as fire)
that is spreading in the network. There could be different objectives in the firefighter
problem, but we concentrate on the objective of saving a specific set of nodes (termed
as a critical set) and prove some results for the same. First, we show that saving
a critical set on trees is fixed-parameter tractable (FPT) when parameterized by the
number of firefighters and propose an algorithm with time complexity O*(4%). We
also show that the problem is FPT on general graphs when parameterized by the
number of firefighters. Additionally, we claim that there is no polynomial sized kernel
on trees for saving a critical set on trees. Finally, we consider the spreading model
of the firefighting problem, where the firefighters spread as well, similar to the fire.
For this model, we show that the problem of saving a critical set parameterized by
the number of firefighters is W[2]-hard (i.e. as hard as k-DOMINATING SET), which
contrasts our FPT result for the previous non-spreading model.
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Chapter 1

Introduction

In the last two decades, there has been a lot of research in understanding the complex
“interconnections” of modern society. The framework of networks has played a critical
role in this research [30]. Primarily, networks can be defined as a set of objects
along with links among some pairs of objects. Depending on the context, links can be
defined using different forms of connections or relations. Because of the flexibility in
the definition, networks are invoked in a wide range of domains such as epidemiology
(social-sciences and diseases), financial trading (finance), mobility dynamics (social-
sciences), protein-protein interaction network, gene regulatory network (biology),
co-authorship and citation networks.

Online social networks can be thought of as analogous to the social networks formed
by individuals in a society in the real world. Abstractly, these social networks are
nothing but a collection of ties among individuals. Each node or user in a social
network can be abstracted as an individual. And the ties or interaction between
individuals can be thought of as relations, which are represented using edges between
two users in the social network. Advent in technology and Internet has simplified
distant communication & travel and digital interactions as well, and thus, these social
networks among individuals are now not limited to the geographical boundaries of
the society or individuals.

Information diffusion process or information propagation happens when a piece of
information is shared or re-shared by a user and is consumed by other users in a net-
work. That is when information flows from one user to another. This is also termed
as information dissemination or information spread or information propagation. This
sharing and re-sharing of information between users in social networks lead to a for-
mation of cascades. Observe that, the formation of a cascade is because of the users
taking decisions sequentially. That is, the later users in the cascade take a decision af-
ter observing the actions of the earlier users. A natural question to ask is, what are the
factors that lead to these sequential decisions among the users? Brown and Reingen
[9] show that the network topology or the structure of the network has a great im-
pact on the extent and the patterns of information diffusion. Along with the network
structure, the type or topic of information also has an impact on the dissemination of
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information. For e.g., as shown in [78], repeated exposure of politically controversial
topics have unusually large marginal effects on adoption, whereas, in case of conver-
sational idioms, repeated exposures have a much less important marginal effect on
the adoption. Weng et al. [9o] show that it is not just that the spread of information
is affected by the network structure; the communication activity among the users in
the network also motivates the creation of links among the users in the network. That
is, the flow of information among the users also shapes the structure of the network.

As people naturally choose to connect with those who share similar tastes, geography,
ideologies, interests, or other aspects of life, social networks implicitly exhibit some
community structure or groups within [70]. Generally, interconnections within a
community are much more than the interconnections across the communities in social
networks [69]. Because of the strong within-community connections, information
circulates rapidly inside the community via the edges which are termed as “strong
ties” (ties between the users with high emotional intensity and intimacy, frequency of
communication, and reciprocal services), whereas, information rarely passes out of the
communities via inter-community edges which are termed as “weak ties” (ties between
the users with low emotional intensity and intimacy, frequency of communication, and
reciprocal services) [40]. These weak ties also contribute significantly to the speed
and the extent of information dissemination [40, 3].

1.1 Research Focus

Online social networking websites like Twitter, Facebook, Google Plus, Quora, Weibo,
etc., act as platforms to facilitate interaction among the users and thus promote
information sharing among these users. With the help of these platforms, billions
of users daily share opinions, videos, photos, communicate ideas with their friend
circle and followers around the world. With these interactions among the users,
an exceptional amount of data is generated and this data can be used to study the
mechanism of human communication and behavioral dynamics of the users in social
networks [9o]. Over time, with the development of technology, the way to interact
has got simpler and the number of interactions has increased, but the complexity
of understanding interactions has grown steadily as well [30]. Additionally, the
set sources of high-quality information providers has grown and each such source
might have different reliability, different intention, and wildly different perspective.
Thus, understanding any piece of information requires understanding the way it is
commended by and indicates other pieces of information within a large network of
links [30].

In order to understand more about information propagation, the four components
that play an important role are: the users generating the content, the type and
topic of content, the network structure among the users, and actual the diffusion
process [9o]. The diffusion process factor, in particular, has received a lot of atten-
tion in the epidemiology domain. Starting with a simple diffusion model, i.e. SI
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( RocEls ) < Status in social >
networks

SI SIS SIR SIRS
e an individual will become -
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Figure 1-1: Comparison of four basic epidemic models (Image from: Li et al. [58])

(Susceptible-Infected) model [73], a number of followup models have been proposed:
SIS (Susceptible, Infected, Susceptible) model [67, 68, 42], SIR (Susceptible, Infected,
Removed/Recovered) [60], and the SIRS (Susceptible, Infected, Removed/Recovered,
Susceptible) model [49]. Figure 1-1 shows the comparison of four basic epidemic
models.

These epidemiology processes are basic and there have been improvements over these
models as well [58]. But the contagion of information can be more complicated than
the one in case of an epidemic because of the number of factors that play a critical role
in the acceptance and transmission of information by a user [16]. Linear threshold (LT)
model and the independent cascade (IC) model are two of the seminal models defined
in the past that define a diffusion process and also consider the choices made by a
user in the process. These models and their extensions are useful in understanding
the problem of finding seed nodes in the network for maximizing the influence [51].

Generative models have been defined to model the process of information diffusion—
these take into account various subsets of the possible factors responsible for the flow
of information. These models are mostly based on modeling (marked) time-stamped
events as per the theory of (marked) temporal point processes and Hawkes process
to consider the excitation from the past events. The model defined by Simma and
Jordan [84] provides the foundational framework for modeling time-stamped events.
Linderman and Adams [59] and He et al. [48] utilize this framework to propose
the Network Hawkes model and the Hawkes topic model (HTM) respectively. These
models incorporate the network structure as well as user temporal dynamics. HTM
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also successfully incorporates the content associated with the events in the model
which is not the case for the Network Hawkes model.

Our research extends this thread by proposing novel generative models for a better
understanding of the process of information diffusion. In addition to the factors
considered by HTM, our models also incorporate interaction among the topics in
the model. Table 1.1 gives a high-level overview of the models along with our models
(HMHP and DNHP). We believe that our proposed generative models answer questions
such as: 1) What are the factors that have an impact on the diffusion of information? 2)
When and at what rate users generate content? 3) What are the topics of conversations
among the users? 4) Why does a piece of information disseminate the way it does
in the network? Additionally, this thesis also tries to understand the computational
complexity of the information diffusion problem from the perspective of parameterized
algorithms.

The following section gives an overview and also highlights the contributions of the
thesis.

1.2 Thesis overview and contributions

The main interest of our research has been in understanding the factors that play
an important role in the dissemination of information and thus model the process of
information diffusion with the help of those factors. Additionally, our research also
focuses on understanding the dynamics of processes like infection or virus propagation
from the perspective of computational complexity by considering one of the simplest
diffusion processes (the firefighting problem).

This dissertation is divided into two parts, where each part examines the information
diffusion problem from a different aspect. The first part focuses on the modeling the
process of information diffusion by proposing two models - Hidden Markov Hawkes
Process (HMHP) (Chapter 3) and Dual Network Hawkes Process (DNHP) (Chapter 4).
These models posit the generation of time-stamped text based cascades by users on a
social networking platform, e.g. Twitter. The second part discusses the question of
limiting the (mis-)information diffusion from the perspective of algorithms, specifically
parameterized algorithms. This part proposes an algorithm for curbing the spread of
infection considering a simpler and deterministic model for the spread of infection,
formalized as the firefighting problem. Following is a brief overview of each of the
parts along with the contributions.

1.2.1 Part 1 — Topical interactions: How information propagates
over networks?

This part of the thesis highlights our generative models (HMHP and DNHP) for text-
based cascades generated as a result of interaction among a set of users in an online
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Figure 1-2: Example of time-series of tweets shown as conversations

social networking platform. As mentioned before, the process of dissemination of
information from a user to another is dependent on a number of factors. Most of
the time we can see only an activity or post posted by a user at a particular time.
Figure 1-2 shows an example of time-stamped textual events. However, other relevant
variables such as which parent influenced a user to generate this event, the topic of
the parent event, and the user network influence strengths are mostly unobserved.
And thus, to have a better understanding of the process of propagation of information
these variables are to be inferred.

Step 1 — Models for information diffusion: (Chapters 3 and 4) We propose two
models, viz. Hidden Markov Hawkes Process (HMHP) and Dual Network Hawkes
Process (DNHP), that posit the process of generation of the set of time-stamped
events (tweets/documents) in a network of interacting users. HMHP and DNHP
incorporate user-user interaction, user-topic patterns, rate of generation of events
(tweets/documents), along with topic-topic interaction simultaneously. In contrast to
other state-of-the-art models, HMHP and DNHP put forward the idea of interacting
topics and also show its evidence with the help of experiments on real and synthetic
datasets. Table 1.1 highlights various aspects captured by other the state-of-the-art
models and our models.

Notice that, the time-series of events is nothing but number of conversations or cas-
cades formed by interaction among the users in the network. Figure 1-3 gives a
pictorial representation of the cascades over the time-series of posts. Each event e
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User- Time- Topic Topic- Topic- Models

N/W Series N/W Excitations
X v v X v Dir-Hawkes[28]
v v X X X Simma-Jordan[84], Net-Inf[37],

Net-Rate[38], MMHP[92], MMRATE
[89], NHWKS[59]

X X HTM[48]
X HMHP[17] (Chapter 3)
v DNHP (Chapter 4)

Table 1.1: State-of-the-art Models.

here is a tuple denoted as e = (t,, C¢, Ze, 1le), Where t, is the time of the event, c, is
the user generating the event, z, is the event that influenced this event i.e. the parent
event, and 7, is the topic associated with this event. Additionally, there is a document
or content associated with each event e and it is denoted by d.. The variables z, and
n. are latent for each event. The temporal component and the parent-child structure
among the events are modeled using Hawkes process and the topical interactions are
captured by combining the Hawkes process with Markov Chain over event topics over
the parent-child structure among the events for the HMHP model. However, in the
case of DNHP, the topical interactions are posited to have an effect on the intensity of
the temporal Hawkes process defined for each user-topic pair.

Step 2 — Inference: How can we efficiently infer the latent variables? (Chapters 3 &
4) For each event, the topic associated with the event and parent event for the event is
the latent variables which are to be inferred. Additionally, user-user network strengths
parameters, topic-topic interaction parameters and the user base rate for each user
to be inferred as well. It turns out that to infer these parameters it is sufficient to
identify the cascades (as shown in Figure 1-4) from the time-series of events. Inferring
the latent variables and the parameters results into understanding various aspects
such as 1) user temporal dynamics (rate at which users generate content), 2) users
topical preferences, 3) topics present in the conversations, 4) user-user influence, and
5) topic-topic interactions. Figure 1-5 gives a pictorial overview of the different aspects
covered by both HMHP and DNHP.

In the case of DNHP, topic base rates are the additional set of parameters to be
inferred. For both the models, we develop a Gibbs sampling based algorithm for
the inference task. HMHP benefits from collapsed Gibbs sampling as the topic-topic
interaction parameters can be integrated out. This is not the case for DNHP because of
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Figure 1-3: Example of time-series of tweets shown as conversations
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Figure 1-4: Example cascades or conversations
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Figure 1-5: Various inference tasks by the models HMHP and DNHP

the interconnection between the user-user and the topic-topic interaction parameters.
Therefore, additional O(K?) parameters are to sampled in each iteration of DNHP,
where K is the number of topics.

Contributions:

* To the best of our knowledge, our model (HMHP) is the first model that jointly
models topical interactions along with user-user influence and user-topic pat-
terns.

* Experiments on real and semi-synthetic data show that HMHP generalizes better
and also recovers diffusion paths, network strengths, and topics more accurately
as compared to other state-of-the-art models.

* More interestingly, HMHP also finds insightful cooperation among topics in real
world tweet dataset, which, from what we know, other existing models could
not. We believe that this could potentially lead to actionable insights enabling,
e.g., user targeting for influence maximization. Figure 1-6 show some anecdotal
results as a result of incorporating topical interactions in HMHP.

* Additionally, we developed another model, i.e. DNHP, in which the event rates
are dependent not only on the user but also on the topic (or mark) associated
with the event. This differs from all the state-of-the-art models for the text-
based cascades which generate the topic or mark associated with the event
independently post event time generation.

* As opposed to HMHP or other models that model text-based cascades, in DNHP
events propagate over two dimensional space which is indexed by users and top-
ics. This transaction over two dimensional space establishes a synergy between
the two spaces. The topic-topic weights and the user-user weights are now
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Hashtags from a pair of parent-child topics
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mlb, orioles, rays, usmnt, redsox

—

Figure 1-6: Parent-Child tweet pair: Both these tweets belong to different topics and
interaction among these topics is found with high frequency. Hashtags from top-3
transitioned topics: Starting from a topic with hashtags related to TV shows mostly
transitioned to topics with the hashtags related to entertainment broadly. Hashtags
from pair of parent-child topics: Topic which has hashtag related to a sport (American
Football) transitions to the topic which has hashtags related to some other sport
(Baseball).

interdependent and the joint estimation allows evidence to flow across these
variables.

* On semi-synthetic and real datasets, DNHP outperforms the other state-of-the-
art models.

1.2.2 Part 2 - On the computational complexity of suppressing the
spread of (mis-)information over networks

This part of the thesis discusses the information diffusion problem through the lens
of parameterized algorithms. In this part of the thesis, the focus is on designing
algorithms to curb the spread of mis-information or infection in the network. To
define the problem formally here, we take the firefighting problem into consideration
and propose results for the objective of saving a critical set from an infection (fire)
in a network. The firefighting problem can be thought of as a game between two
players playing alternately — fire and the firefighter. Here, fire is analogous to an
infection or virus in a network and the firefighter is analogous to inoculation or
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vaccination. The diffusion process in the firefighting problem is deterministic and
is simpler as compared to the real world. At every even time-step, fire (infection)
spreads deterministically to all its neighbors which are not saved by the firefighter. At
every odd time step firefighter gets a chance to save a node or subset of nodes in the
network. Once a node is saved, the fire cannot pass through this node.

Informally, in the area parameterized algorithms the goal is to design an algorithm
(for a hard problem) that has time complexity of the form f(k)O(n®), where k is
the parameter associated with the problem into consideration and c is some constant
independent of k. Problems for which algorithms with the time complexity of the form
f(k)O(n®) can be designed are termed as fixed parameter tractable problems. Here, for
the firefighting problem with the objective of saving a critical set (SACS) with at most
k firefighters (k is the parameter associated with the problem), it turns out that, the
problem is fixed parameter tractable for general graphs. Moreover, when the graph
is restricted to trees, we can design a faster algorithm with the help of important
separators [19]. However, the important separators do not work in case of general
graphs and so we use the notion of tight separator sequence [61] to propose the final
algorithm in case of general graphs. (All the results and the required preliminaries
associated with this part of the thesis are explained in Chapter 5.)

Contributions:

* With the help of a reduction, we show that saving a critical set problem is
NP-complete even when the size of the critical set is 1.

* We develop a fixed parameter tractable algorithm for SACS problem on a graph.

* We also propose a faster algorithm for the SACS problem when the input graph
is a tree.

* Moreover, we also show that it is not possible to preprocess the tree such that the
size of the tree is polynomial in k and solve the SACS problem (kernelization),
where, k is the parameter (number of allowed firefighters).

* Also, from what we know, our work is the first work that exploits the connection
between the notion of important & tight separators and the firefighting problem.

* Additionally, for a slightly different and related model, that is the “Spreading
model”, defined in [1], we show solving the SACS problem is as hard as solving
the DOMINATING SET problem.
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Chapter 2

Preliminaries

This chapter gives an introduction to point processes and also discusses algorithms to
simulate these processes. A point process can be thought of as a succession or series of
points on a real number line. Different point processes are defined by the patterns of
how these points are located on the real number line. We start with the definition of
point processes first and then explain one of the simplest point processes, which is the
Poisson process. A (homogeneous) Poisson process is characterized by an intensity
function A, which is a constant value. That is, in case of homogeneous Poisson
process there is an assumption that the points are roughly evenly spread over any
interval. Homogeneous Poisson process can also be extended to an inhomogeneous
Poisson process by allowing the intensity to vary according to a deterministic function
A(t). Poisson processes are used to model various temporal phenomena e.g. times
of arrival of the buses at a bus stop, the phone calls at a help center, radioactive
decay, customers arriving at a restaurant, events of traffic, activities of customers on a
website, etc. Poisson processes are, however, not a good choice to model the settings
where the occurrence of events in the future is dependent on the events in the past.
For example, earthquakes, where there are aftershocks post the main event, stock
prices, activity of a user on a social networking website, etc. To explain or model
these processes, where the events are dependent on past events, the Hawkes process
was developed. In this chapter after explaining the Poisson processes, we eventually
move on to the Hawkes process.

2.1 Introduction

A point process is a random process realized by a sequence of random events {s;}
where s; € R,, i € Z*, and the events can be abstracted as points belonging to some
set, such as location or time. A Point process is characterized with the help of an
associated (conditional) intensity function, which quantifies the likelihood of Point
processes turn out to be a perfect fit in number application domains such as finance,
seismology, social media, disease modeling, etc. For example, in the financial domain,
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the buying or selling of stocks over time in the stock market represents the events
[2, 85, 54]. In the case of seismology, an earthquake represents an event and the event
data primarily consists of the location of the earthquake [8, 88]. And, in case of online
social media, the actions (for eg. liking a post, upvote, creating a new post, retweet,
etc.) performed by the users over time represent the events [93, 48, 17].

Definition 1 (Point Process ([83] pg. 1)): Let (Q, ¥, P) be a probability space. A
point process on R* is a sequence of non-negative random variables {Tk}r=1,0,., Such
that for all k, Ty < Ty41-

Ti can be interpreted as the time of occurrence of the k' event. Such processes
are known as temporal point processes. The time between the consecutive events is
termed as interarrival time. Also, when the points are distributed in a two dimensional
space, the process is called a spatial point process. Indeed, the notions of interarrival
times and counting processes that follow are naturally tailored to the temporal point
process.

Definition 2 (Interarrival time ([80] p. 64)): Consider a temporal point process
{Tk}x=1,0,.. Define Wy = Ty — Ty—1 with the convention To = 0. The sequence {Wj }y_1 5 .
is called the interarrival times.

Definition 3 (Counting Process ([771)): A counting process associated with the tem-
poral point process {Ti}k=1,2,.. represented as N; or N(t) is a random function defined
on time t > 0, taking values in Z™, that counts the number of occurrences up to and
including time t, i.e.

N(t) = Z Tir <ty (2.1)

k=1,2,...

Definition 4 (Intensity of point process ([52])): The intensity of a point process is
defined as
P{N(t,t + h] > 0}

Alt) = hll)n(}+ - (2.2)

N(t,t + h] indicate the count of the number of events in an interval of length h. A(t)
intuitively measures the rate at which the points/events occur.

2.2 Poisson Process
One of the simplest families of point processes is the class of the Poisson process. In
this section, we present the definition and some properties of the Poisson process.

Definition 5 (Poisson Process ([80] p. 314—315, Definition 5.3)): The point process
N is a (homogeneous) Poisson process with rate A,A > 0, if and only if, for all t > 0 and
h — 0"
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@ N(0)=0

(ii) The process has independent increments.
(iii) P{N(t + h) — N(t) = 1} = Ah + o(h)
(iv) P{N(t + h) — N(t) = 2} = o(h)

where, o(h) is a quantity for small h, which is the lower order of h, i.e.

An equivalent definition of Poisson process in terms of the counting process is defined
as follows:

Definition 6 (([80] p. 313, Definition 5.1)): The counting process {N(t),t > 0} is
said to be a homogeneous Poisson process having rate A, A > 0, if

(i) N(0)=0
(ii) The process has independent increments.

(iii) The number of events in any interval of length t is Poisson distributed with mean
At. That is, for all s,t > 0

_pe (A"

P{N(t+s)—N(s)=n} =e ,
n!

n=0,1,... (2.3)

Therefore, from condition (iii) it follows that Poisson process has stationary increments
and also
E[N(t)] = At

Thus, A is known as the rate of the process.

The following proposition shows an interesting property of the interarrival times in
case of (homogenous) Poisson process.

Proposition 7. ([79] p. 64 Proposition 2.2.1) The interarrival times {Wy}i_q . . of
a (homogeneous) Poisson process with rate A > 0, are independent and identically
distributed exponential random variables having mean 1/A.

The following theorem gives the joint density of n events that occur in a time interval
[0, T].

Theorem 8. ([15] Theorem 3.3) The joint density that exactly n events occur in the
interval [0, T|] for a Poisson process with rate A taking values 0 < t; <ty < -+ <t, <T
is

Frody t1s ety | Tasy > T) = 2™
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Figure 2-1: Illustration of inversion method

2.2.1 Simulation for homogeneous Poisson process

Here, we describe one of the methods to generate events as per a homogeneous Poisson
process. The property that is exploited in generating events is that the interarrival
times are independent and exponentially distributed with mean 1/A. Thus, to generate
events as per a homogeneous Poisson process it suffices to generate independent
exponentially distributed random variables. And one of the simplest methods to
generate exponentially distributed points is the inversion method.

Inversion Method: This method of generating sample values can be applied in all
cases where an explicit expression for the cumulative distribution function (CDF) of
a random variable exists. The CDF for a random variable (say Y) Fy(y) is a non-
decreasing function and is bounded between 0 and 1, i.e. 0 < Fy(y) < 1 for all y.
Which says that there is a mapping between the CDF and a random variable between
0 and 1. Therefore, then by sampling a random number u; for a uniform random
variable U and then taking an inverse image of u; on the abscissa a sample value y; of
a random variable Y can be generated. Figure 2-1 gives an illustration of this method.
The reason that it works is because:

P(Y <ys) = P(U < Fy(ys)) = Fy(ys)
Now, for exponential random variable X with a probability density function (pdf)
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fx(t) = Ae ™ for t > 0, the CDF can be written as:

t
Fx(t) = / reMdr=1-—e™ forallt >0
0

Let u; be a sample from a uniformly distributed random variable U, then following
the inversion method, we have:

up = Fx(t)=1- G_M

which implies that
¢ = —111(1 - u1) _ —ln(uz)
- A A
where, up, = (1 — u;) is also a uniformly distributed random variable.

Thus, to get a sample from an exponentially distributed random variable with rate

parameter A, it is enough to sample a point u ~ Uniform[0, 1], then w, such that

w = _h;(u) will be the required sample.

As the time between the events in case of homogeneous Poisson process is expo-
nentially distributed, Algorithm 1 describes a pseudo-code to generate samples for
homogeneous Poisson process in an interval [0, T] as per the inversion method.

Algorithm 1: Simulating events using Homogeneous Poisson Process with
rate A in an interval [0, T] ([15] Algorithm 1)
Data: A, T
Result: Events with rate A.
1 Initialize n = 0, to = 0;
2 while True do

3 Generate u ~ uniform(0, 1);
4 Letw = —Ilnu/A;

5 | Settpi1 =ty +w;

6 if t,.1 > T then

7 \ return {tx}xk=1,2,..n;

8 else

9 | Setn=n+1;

10 end

1u end

We will now move on to an inhomogeneous Poisson process which is a bit more
complex as compared to the homogeneous Poisson process.
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2.3 Inhomogeneous Poisson Process

The properties of the inhomogeneous Poisson process are almost similar to that of the
homogeneous Poisson process. In the case of an inhomogeneous Poisson process, the
intensity A varies as a function of t. Here is the formal definition for the inhomogeneous
Poisson Process.

Definition 9 (Inhomogenous Poisson Process ([80] p. 339, Definition 5.4)): The
point process N is said to be an inhomogeneous Poisson process with intensity function
At) > 0,t >0, if

(i) N(0)=0

(ii) The process has independent increments.

(iii) P{N(t + h) — N(t) =1} = A(t)h + o(h),ash — 0

(iv) P{N(t +h) —N(t) > 2} =o(h),ash — 0
As similar to that of the homogeneous Poisson process, the following proposition talks

about the probability of a number of events in an interval for an inhomogeneous
Poisson process.

Proposition 10 ([15] Proposition 4.1). Let the point process N be an inhomogeneous
Poisson process with intensity function A(t), then for any t > 0, the random variable

N(t) follows a Poisson distribution with parameter fot A(s)ds, i.e.

o ([t A(s)ds)n

- nezZ* (2.4)

P{N(t) = n} =

2.3.1 Simulation for Inhomogeneous Poisson Process

Lewis and Shedler in 1979 [57] proposed that an inhomogeneous Poisson process can
be simulated using a “thinning” algorithm, which can be thought of as similar to that
of rejection sampling. Before going to the theorem (Theorem 11) that mathematically
justifies the correctness of the thinning algorithm, we first give an informal overview
of the algorithm and illustrate how it works.

Thinning Algorithm: This method can be used to generate samples for any random
variable that has values within a finite range and has a bounded probability density
function (pdf). This method is based on the geometrical interpretation of the pdf
of the random variable. Consider a random variable X with a pdf fx(x), with the
maximum value of the pdf denoted by C, and let X take values between A and B
([A, B]). Now to generate samples of X follow the steps as follows:
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Figure 2-2: Illustration of Thinning method for generating samples from a random
variable X

1. Generate two uniform random numbers u; and u,; between 0 and 1. Let xo =
u; X (B—A)and yg = us X C.

2. If the number yq is below the pdf at xg i.e. yg < fx(xp), then accept xq as a
sample for X, else, reject and continue the process from step 1.

Figure 2-2 shows a pictorial representation of this procedure. The reason that this
procedure of sampling points works is: Observe that, the points generated according
to step 1 of the above procedure are uniformly distributed over the region formed by
the rectangle with area (B—A) X C. Thus, for any point with the x-coordinate between
X and xg + dx we can say that:

fx(x) - dx _ fx(x)
C-dc  C

P(acceptance of point |xg < x < xg + dx) =

Theorem 11 formally justifies the correctness of the “thinning” algorithm, where, first

the points are generated according to homogeneous Poisson process with intensity
A > A(t) and then are removed with probability 1 — A0 where A(t) is the intensity of

the required inhomogeneous Poisson process. !

Theorem 11 (Lewis and Shedler, 1979 [57]). Consider a homogeneous Poisson process
with intensity A Suppose that ty, to, . . ., ty(r) are random variables representing event
times from the homogeneous Poisson process with rate function A, and lying in the fixed
interval (0, to]. Let A(t) be a rate function such that 0 < A(t) < Afordllt € [0,to]. If the
it" event time T} is independently deleted with probability 1— % fori=1,2,...,n,then
the remaining event times form an inhomogeneous Poisson process with rate function A(t)
in the interval (0, T ]

Algorithm 2 describes the pseudo-code for generating random variates from an inho-
mogeneous Poisson process which follows from Theorem 11.
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Algorithm 2: Simulating events using Inhomogeneous Poisson Process with
rate A(t) in an interval [0, T] ([57] p.7, Algorithm 1)
Data: A(:), T
Result: Events with rate A. B
1 Initialize n = m = 0,tp = 5o = 0,A = supy,<r A(t);
> whiles,, < T do

3 Generate u ~ uniform(0, 1);

4 Letw = —Inu/A;
Set spe1 = Sy + W;

6 Generate D ~ uniform(0, 1);
if D < A(sm+1)/A then

8 th+1 = Sm+15

9 n=n+1;

10 end

1 m=m+ 1;

12 end

13 if t,o1 > T then

| return {tx}r=12,..n;
15 else

16 | return {tx}r=1,2,.,n-1;
17 end

Notice that the only constraint on A is A(t) < A for all ¢ in [0, T]. The higher the value
of A more is the number of events according to the homogeneous Poisson process with
intensity 1. But, observe that, the value of A determines the probability of rejection
of events from the final process with intensity A(t). A higher value of A corresponds
to a smaller probability of acceptance of points in the process with intensity A(t).
Therefore, in practice, the value of A should be as close to supremum/maximum of
A(t) as possible for higher efficiency (lesser iterations in the while loop in Algorithm

2).

2.4 Hawkes Process

In the case of the Poisson process, let it be homogeneous or inhomogeneous, the
events arrive independently of the events in the past. However, this assumption is not
appropriate for all applications. In some settings, the rate at which events arrive is
influenced by the number of events that have already happened in the past. For e.g.,
in the case of earthquakes, as mentioned before, the aftershocks are dependent on
the main event. The processes where the rate of events depends on past events are
termed as self-exciting processes. Hawkes process is one of the well-known self-exciting
point processes. In this section, we first formally define the self-exciting process and
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then move on to the Hawkes process.

Definition 12 (Self-exciting point process (Donald L. Snyder, 1991, p. 287 [86])):
A point process is called self-exciting if the intensity A(-) depends not only on time t but
also the entire past of the point process.

The following definition describes the past or history of point process formally and
mathematically.
Definition 13 (Natural filtration (Grandell, 1997, p. 51 [39])): For any process N(t),
the natural filtration FN = (?';N ;2> O) defined by

F' = o{N(s);s < t}
Here, F,N is the o-algebra generated by N up to time t, and represents the internal history
of N up to time t [15].

Definition 14 (Stochastic intensity function (Last and Brandt, 1995, p. 10 [1)):
Let N(t) be a point process with natural filtration F. The process defined by

P{N(t +h) = N(t) > O|FN}
h

Mel7) = Jlim,

is called the stochastic intensity function of the point process.

2.4.1 Univariate Hawkes Process

Definition 15 (Hawkes Process (Hawkes, 1971, p. 84 [47])): Let N(t) be a univariate
simple point process satisfying

(D) N(t) =0,
(i) where A(t) is a stochastic process given by

At) = p + Z{k:tk<t} ae Pt
where mu > 0and 0 < o < B
(iii) A(t) is the stochastic intensity of the point process

P{N(t+h) = N(t) = 1|7} = A()h + o(h)

(iv) The point process is orderly, i.e.

P{N(t +h) — N(t) > 2|7} = o(h)
is called a univariate Hawkes process with exponential decay on [0, o).
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2.4.2 Simulating events using Hawkes Process

Observe that, to generate samples according to Hawkes process, a thinning algorithm
similar to the one in case of inhomogeneous Poisson process can be used. Algorithm
3 describes the pseudo-code to generate events as per a Univariate Hawkes process
with intensity given by A(t) = p + X k. <c) ae Pt=t%)  Algorithm 3 is similar to that
of the algorithm 2, the difference is just in the intensity function. We still mention it
here for completeness.

Algorithm 3: Simulating events using Univariate Hawkes Process with rate
A(t) in an interval [0, T] (Ogata, 1981, Algorithm 2, [71])
Data: A, T, a, B
1 Initializen =0, tg =s=0, 7 = @;
> whiles < T do
s | LetA=A(sY)=p+ 2 {reT) ae P,
4 Generate u ~ uniform(0, 1);
Letw = —Inu/A;
6 Sets =5 + w;
7 Generate D ~ uniform(0, 1);

8 if DA<A(s)=p+ (reT) ae P60 then

9 th+1 = S;
10 n=n+1;
11 end

12 end

13 if tpy1 < T then

w | return {tx}r=12,..n;
15 else

16 \ return {tk}k=1,2 ..... n-1;
17 end

2.4.3 Multivariate Hawkes Process (MHP)

Multivariate Hawkes process (MHP) is an extension of the univariate Hawkes process
to the multivariate case. In addition to the self-excitation feature, which is inherited
from the univariate case, the Multivariate Hawkes process additional possesses the
cross-excitation feature, which is between different dimensions.

Definition 16 (Multivariate Hawkes Process (MHP) (Hawkes, 1971, p. 86 [47]1)):
Let N(t) = (N'(¢), N*(t), ..., N"(t)) be a simple multivariate point process satisfying

(i) N(0)=0,andform=1,2,..., M
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(ii) A"(t) is a stochastic process given by

AT(t) =t + i Z amne—ﬂmn(t—qj)

n=1 {j:tn<t}
where i, > 0, ot = 0and B, =2 0 for myn=1,2,...,M

(iii) A™(t), independently for each m, is the stochastic intensity of the point process
N™(¢)
P {Nm(t +h) - N™(t) = 1|7—;I_V} = A"(t)h + o(h)

(iv) The point process is orderly, i.e.

P{N(t+h) = N(t) > 2|FY} = o(h)

where FN is the natural filtration of the process, is called an M-variate Hawkes process
with exponential decays on [0, co)

2.4.4 Simulating events using MHP

Simulation of events as per the multivariate Hawkes process is similar to that of
the univariate case (thinning algorithm), with an additional step that decides to
which dimension an accepted point belongs. Proposition 17 justifies mathematically
the correctness of the thinning based algorithm (Algorithm 4) for generating points
according to Multivariate Hawkes process. Proposition 17 states that the accepted
points must be distributed to each dimension with probability proportional to the
intensity of the respective dimension.

Proposition 17 ((Ogata, 1981 p. 24, Proposition 1 [71])). Let N(t) = (N'(¢), N*(t), ..., N¥(¢))
be an Multivariate point process on an interval [0, T| with stochastic intensities A™*(t) =

A (e|FN) for m = 1,2,..., M. Suppose there is a one-dimensional 7~ process A*(t)

which is defined path-wisely satisfying

M
Z AT < ), 0<t<T

m=1
and set )
29°() = A5(6) = Ty ™ (2)

Let 1, ..., En(r) € (0, T] be the points of the process N(t) with stochastic intensity A4(¢).
For each of the points, ty where k = 1,2,...,N(T) attach a mark m = 0,1, ..., M with
probability A™* (&) /A* (fx), respectively. Then the points with marks m = 1,2,..., M,
provide a Multivariate point process with stochastic intensities A™ (t)
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Algorithm 4: Simulating events using Multivariate Hawkes Process with rate
A(t) in an interval [0, T] ([71])

Data: Hpyrx1> MM BMXM’ T
1 Initialize 7' =---=TM=g,nt =-.. =n" =0,5s = 0;
> whiles < T do
3 | LetA=YM am(st)=3yM (]Jm + 2N e O‘mne—ﬁmn(s_r))§
4 Generate u ~ uniform(0, 1);
Letw = —lnu/X;
6 Sets =5 + w;
7 Generate D ~ uniform(0, 1);

8 if DA< M Am(s) = 3M_, (pm +3M S e amne_ﬁm“(s_f)) then

9 k=1;

0 while DA > Yk _ A™(s) do
11 ‘ k=k+ 1;

12 end

13 nk = nk + 1;

14 trljk =s;

15 Tk=7F U{tﬁk}Q

16 end

17 end

18 if tﬁk < T then

i | return 7™ form =1,2,..., M;
20 else

21 ‘ returnTl,...,Tk\{tﬁk},...,‘TM;
2 end

Algorithm 4 gives the pseudo-code to simulate points as per the Multivariate Hawkes
process. The following are the input parameters to the algorithm.

1. p: A vector with elements 1, form =1,2,...,M

2. a and B: M X M matrices that define the parameters «;,, and B;,, for m,n =
1,2,..., M, for every pair of dimensions

3. T: The maximum time till which the events are to be generated

Eachset 7™ form = 1,2,..., M represents the ordered set of points in the dimension
m, and n™ form = 1, 2,..., M, counts the number of events in 7™ (the dimension
m).

For completeness, let us also add some basic information about Dirichlet distribution
which we use widely in the processes we define.
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Definition 18: The Dirichlet distribution of order K > 2 with parameters a1, Qa, . . ., 0 >
0 has a probability density function given by:

K
1 -1
flxla) = —| [x{" (2.5)
B(a) 1_1[
where, B(a) is a normalizing constant given by:
K
— 1 I'(a;
B(a) = M (2.6)
(Xt @)

Equation 2.5 is a probability density function, therefore,

1 177 4-
[ T e
xB(a)-‘

1 ] (Xi—l
%/x | Xl. dx (2.7)

=
Il
—

|~
I
—

i=1

/ xf‘i_l dx = B(a)
=

1=

| =

2.5 Bayesian Inference

Bayesian inference is a method that analyzes data to infer properties of the underlying
probability distribution. It is mainly dependent on the Bayes’ law that updates the
distribution for a hypothesis as more and more evidence is seen. We may have a prior
belief about some event, but, that might change (either becomes stronger or weaker)
as more information about that event is brought to light. Bayesian inference is a
mathematical tool that provides a formal way to update our prior beliefs to posterior
beliefs as new evidence or data is exposed.

Let us first introduce Bayes’ Law that form the basis for Bayesian inference.

Theorem 19 (Bayes’ Law). Assume that Eq, E», ..., E, are mutually disjoint sets such
that | Ji_; E; = E. Then,

Pr(EjNB)  Pr(B|Ej)Pr(E))

P(B) S Pr(BIE)Pr(E) =8

Pr(E;|B) =

In machine learning literature, the Bayes’ law is mostly represented in the following
way:

Pr(D|06)Pr(0)
Pr(D)

Pr(6|D) = (2.9)
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Where, 0 is used for parameter, and D represents the data.

Consider a coin tossing example. Let’s think about the question: “What is the
probability of seeing 6 heads in 8 flips given that the coin is unbiased or fair (i.e.
Pr(Heads) = Pr(Tails) = 0.5)?”. In the Bayesian inference setting, we are interested
in the alternate question. That is, we are interested in quantifying the fairness of the
coin given that we have seen a particular number of heads and tails. Here is the formal
way to put that up: “What is the probability of the coin being fair given that k number
of heads are observed when the coin is flipped n number of times?” Figure 2-3 gives
a view of the update of the posterior probability distribution as more and more data
(coin flips) are observed. Before describing the Figure 2-3 in some more details, let
us first describe the terminology that is used to express each of the probability terms
in the Bayes’ law (Eq. 2.9).

* P(0) term is called as prior. This is the distribution for the parameter without
seeing that data (i.e. apriori). And thus, is known as a prior distribution or prior
belief about the parameter.

* P(B|D) is termed as posterior. This term can be thought of as the updated
belief about our parameter 6 after observing the data 9. So let us say in the
coin tossing example, you start with a uniform distribution over the parameter
6, which is the prior, and the posterior (updated belief) is the information about
O that we have after seeing 8 heads out of the 10 flips.

* P(D|0) is termed as likelihood of the data (given the parameter). This is the
probability of the data 9 given that it was generated with parameter 6.

* P(D) is called as the evidence term. This can also be written in the following
way:

Pr(D) = /6 Pr(0)Pr(D|0)do

Thus, Pr(D) is the weighted sum of Pr(D|60), weighted by the probability of
the values that 0 takes.

Figure 2-3 gives an idea of the update in the belief about the parameter 6 as more and
more data is exposed. In this case, the data observed is the number of heads after a
particular number of flips. It starts with a prior belief that is the uniform distribution.
That is, it says that the parameter 6 = Pr(Heads) taking each value in the range
[0, 1] is equally likely. As the number of flips and correspondingly the number of
heads increases, the belief about the parameter 0 gets concentrated near the value
6 = Pr(Heads) ~ 0.46. Which gives an intuition about the coin being a fair coin.

2.5.1 Conjugate Priors

Notice that the posterior probability equation Eq. 2.9 itself requires computing an
integral — the evidence term P(D) = f Pr(D|0)Pr(0)db. This is required to normalize
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Figure 2-3: Example of Bayesian posterior update procedure [74]

the posterior so that it is a distribution. So the natural question to ask is about the
tractability of this integral. And this exactly is the idea behind conjugate priors. That
is, given a likelihood function Pr(9|0), choose a family of prior distributions such
that the integrals as that of the evidence term P(9) becomes tractable (for all the
prior distributions in the family). Additionally, we can choose the family of prior
distributions such that the posterior is also in the same family as that of the prior.
Observe that, one can achieve the second goal (i.e. having the posterior in the same
family as that of the prior) vacuously by defining the family of all the probability
distributions. But this might not guarantee the tractability of the integral. However,
on the other hand, one can achieve the goal of having tractable integrals by considering
the family of distributions to be a distribution that is as simple as a constant, however,
in that case, the posterior might not be in the same family as that of the prior [50].

Thus, conjugate priors have captivating computational properties and are used widely
in practice. However, one should be careful while using conjugate priors. The use of
conjugate priors implicitly has relatively solid assumptions and thus it is important to
understand the influence of the prior on the posterior. If the posterior is not much
influenced by the prior then one can move ahead with some confidence. However,
if the posterior is highly influenced by the prior, then one must try to understand or
consult a domain expert to understand the implications of the assumptions brought in
by the use of the prior. The other option would be to use some other priors or collect
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some more data and diminish the effect of the prior [50].

Let’s try to understand more by considering an example. Going back to the coin
tossing example, where we are interested in understanding how fair the coin is given
k number of heads observed out of a n coin flips. The likelihood Pr(£|6) in the coin
tossing example is nothing but the binomial distribution with parameters (k, n, 0).
And it is of the form Pr(D|0) o« 6°k(1 — )%, Observe that if the prior is of the
similar form as that of the likelihood, i.e. if the prior Pr(6) is proportional to the
powers of 6 and (1 — 0), then the posterior Pr(0|9) will also be distributed similarly
as that of the prior, but, with different parameters. That is, if Pr(8) « 6%(1 — 6)®),
then the posterior Pr(6|D) oc 84%(1 — 8)®+"=%)_ One of the distributions that could
give a required form is the Beta distribution.

Beta Distribution: A random variable X with range [0, 1] has a beta distribution
with (hyper)parameters o (a > 0) and 8 (8 > 0) if the pdf is given as:

I'(a +p)
T'(a)C(B)

Here, I' is the Gamma function. The expectation of the Beta distributed random
variable X turns out to be: E[X] = ﬁ Given this information about Beta distribution,
if we now consider the prior Pr(0) for the fairness parameter 0 in the coin tossing
example to be a Beta distribution with hyperparameters (a, ), then the posterior
Pr(6|D) will also turn out to be a Beta distribution with parameters (a + k, 8 + n — k).
Here is the formal way to present that:

Pr(x|a,B) = x% (1 = x)D (2.10)

Pr(6]|D, a, B) « 65(1 — 6)" k¥ 1(1 — P1

= Beta(a + k, B +n — k) (2.11)

We are ignoring some terms on the right hand side as those are independent of 6
and thus can be considered as constant that do not effect the distribution. As the
posterior turns out to be a Beta distribution on having a Beta prior for the Binomial
likelihood, the Beta distribution is designated as emphconjugate prior for the binomial
distribution. Another way to understand the benefit of conjugate priors is, observe
equation Eq. 2.11, it indicates that the Bayesian update is now reduced to modifying the
parameters (hyperparameters) of the prior distribution than computing the expensive
integrals. In the coin tossing example, we mentioned using a uniform distribution as
the prior belief for the parameter 6. However, the uniform distribution is a special
case of Beta distribution, which is Beta(1, 1).
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2.6 Markov Chain Monte Carlo

Lets recall the equation for the posterior distribution (Eq. 2.9).

Pr(0|D) = Pr(ip)rl(ez);r(e) (2.12)

The denominator here, which is termed as evidence, is also called as total probability.
Total probability is the probability of observing the data under all the possible values
of 6. Another way to represent the term Pr(D) is:

Pr(D) = /GPr(Q)Pr(Z)|9)d9 (2.13)

That is, it sums the probability of 9 over all the possible values of 8. Most of the
times this integral does not have a closed form. And thus, we need an approximation.
One of the methods that help in getting samples from unknown distribution is Markov
Chain Monte Carlo (MCMC). MCMC generates samples such that the samples mimic
the unknown distribution. MCMC methods help in estimating the distribution where
it is impossible to obtain it analytically. One of the MCMC methods that are used in
the subsequent chapters is Gibbs sampling. Here we would give an overview of the
Gibbs sampling algorithm. But before going on to that, we will first give a very brief
introduction to Monte Carlo simulations.

2.6.1 Monte Carlo (MC)

A collection of tools for estimating values through sampling is referred to as Monte
Carlo (MC) methods. These methods are widely used in the areas of engineering and
physical sciences [66]. These methods perform some computation on the random
samples to provide an estimate of the required parameter where calculating it is
too expensive or impossible directly. The basis of the MC methods is the Law of
Large numbers which states (informally) that as the number of identically distributed
randomly generated samples increase, the sample mean (average) of these samples
approaches the theoretical mean. Let us look at the example of a very well known MC
estimate which is the estimate of & (Pi).

Generate random points within a box of length 1.0 unit and breadth 1.0 unit. Consider
this as the portion of the first quadrant in the 2-D plane. Consider a circle of radius
1.0 unit at the center of the 2-D plane. Note that the first quarter of the circle is
embedded in the box. Now, count the fraction of points that fall within an embedded
circle. Also, notice that the probability of points falling inside the embedded portion
of the circle is /4. The fraction of points inside the portion of circle must be equal
to this probability. This would give an estimate of zr. Figure 2-4 gives a pictorial view
of the idea that as the number of randomly sampled points increases, the value of &
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Figure 2-4: Plots for 1K, 10K, 100K, and 1M random points [81]

would approach its original value.

Therefore, this example gives a good overview of the MC methods. However, in gen-
eral, it is difficult to generate random samples that are from a required probability
distribution. Even in the example of estimating the value of i the points were consid-
ered to be distributed uniformly. But most of the time even getting a uniform sample
from the set of all possible values might not be easy. In such cases, the Markov Chain
Monte Carlo (MCMC) method plays a crucial role.

MCMC method provides a way to sample points from a required probability distribu-
tion [66]. Often in the case of Bayesian inference where we need to sample from the
posterior distribution, the MCMC method is suitable for this task. Here is the basic
idea about an MCMC method. Define an ergodic Markov Chain for which the set of
states is the sample space and the required probability distribution is the stationary
distribution. Consider Xy, Xj, ..., X, as the states of the run of the Markov Chain.
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After a sufficiently large number of steps, say r, the distribution of the state X, will be
close to the stationary distribution given that the Markov chain converges to a station-
ary distribution starting from any state X, after a large number of steps. Repeating
this argument, one can take X;, Xy, X3, . .. as almost independent samples from the
stationary distribution of the Markov chain [66]. Therefore, using this method we
can sample values from the required posterior probability distribution. As mentioned
above, here we give an overview of one of the MCMC methods, namely the Gibbs
sampling, that helps us in obtaining samples from the posterior distribution.

2.6.2 Gibbs Sampling

The Gibbs sampling algorithm is a method in which a Markov chain is constructed by
considering the probability of the current sample conditional on the prior sample. The
basic idea behind Gibbs sampling is to sample each variable in turn conditioned on the
values of all other variables. Here is a brief overview of the Gibbs sampling algorithm.
Consider X1, Xy, ..., X as the random variables in the stochastic process. Start by

() MO
Xy 'y

initializing these var1ab1es to X, ,xl(co) (these are mostly samples from the

prior distribution). In each iteration i, for each j = 1,..., k sample x()

J(.) ~ Pr (X =xilx =x{,... X1 = ]()I’Xj+1 - x;i_f): o X = xl(:_l)) (2.14)

Continue this process until convergence. Algorithm 5 gives a pseudo-code that explains
how Gibbs sampling works.

Algorithm 5: Gibbs Sampling Algorithm
1 Leti=0;

1 @) (l))
Xy Xy Hee s Xy

» Initialize x® = (
3 fori=0,1,...do
4 xgi) ~ Pr (X1 =x1|Xy = x(i_l), e, X = x(i_l)) ;

5 Xgi) ~ Pr (X = X2|X1 = X() X = X(l 1), . ,Xk = x]({i—l));

k 1 k

6 x) < pr (Xk = xi|X1 = x(i), cos Xk-1 = x(izl);

- end

In Gibbs sampling, there is an assumption that we can compute the conditional dis-
tribution of variable conditioned on all other random variables and can sample from
this distribution exactly. All the random variables might not always be dependent on
all other variables. For example in graphical models, a random variable at a node is
dependent only on the variables that are in the Markov blanket of that node. One of
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the variants of the Gibbs sampling method is collapsed Gibbs sampling in which we
marginalize as many variables as possible. The benefit of this is that it reduces the
number of random variables to be sampled and thus the space of random variables.

In the subsequent chapters to obtain samples from the posterior distributions we com-
pute the conditional distribution of the random variables and use the Gibbs sampling
method.
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Chapter 3

Discovering Topical Interactions in
Text-Based Cascades’

3.1 Introduction

A popular area of recent research has been the study of information diffusion cascades,
where information spreads over a social network when a ‘parent’ event from one
infected node influences a ‘child’ event at neighboring node [28, 48, 93, 35, 44]. The
action of propagating information between two neighboring nodes depends on various
factors, such as the strength of influence between the nodes, the topical content of
the parent event and the extent of the interest of the child node towards that topic.
However, such explanatory variables and also the identity of influencing or parent
event for any event, are typically unobserved and need to be inferred.

A recent body of work in this area has proposed increasingly sophisticated models
for information cascades. To account for the temporal burstiness of events, Hawkes
processes, which are self-exciting point processes, have been proposed to model their
time stamps [76]. Also, influences travel more quickly over stronger social ties.
This is modeled by the Network Hawkes process [59] by incorporating connection
strengths between users into the intensity function of the Hawkes process. When
events additionally have associated textual data, parent and child events in a cascade
are typically similar in their topical content. The Hawkes Topic Model (HTM) [48]
captures this by combining the Network Hawkes process with an LDA-like generative
process for the textual content where the topic mixture for a child event is close to
that for a parent event.

Despite its strengths, the HTM fails to capture one important aspect of the richness of
information cascades. Typically, there are sequential patterns in the textual content
of different events within a cascade. In terms of topical representation of the events,
topics of parent and child events display repeating patterns. At the same time, these

LAll the results in this chapter are based on the publication [17] at ICDM-2018
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cannot be assigned to the same topic. Instead, our model assigns these to different
topics and recognizes this to be a frequently appearing topic pair in other parent-child
tweets. This serves as additional evidence for inferring a parent-child relationship
between this tweet pair.

However, just like topic distributions, topic interaction patterns are also typically latent
and need to be inferred. Interestingly, inferring topic interaction patterns, in turn,
benefits from more accurate parent and topic assignment to events. This calls for joint
inference of topic interaction patterns and the other latent variables.

We propose a generative model for textual cascades that captures topical interactions
in addition to temporal burstiness, network strengths, and user topic preferences.
Temporal and network burstiness is captured using a Hawkes process over the social
network [59]. Topical interactions are modeled by combing this process with a Markov
chain over event topics along a path of the diffusion cascade. Such topical Markov
chains have appeared in the literature [41, 43, 4, 5, 27], but in the very different context
of modeling word sequences in a document. Our model effectively integrates topical
Markov chains with the Network Hawkes process and we call it the Hidden Markov
Hawkes Process (HMHP).

We derive a simple and efficient collapsed Gibbs Sampling algorithm for inference
using our model. This algorithm is significantly more scalable than the variational
algorithm for the HTM and allows us to analyze large collections of real tweets. We
validate using experiments that HMHP fits information cascades better compared to
models that do not consider topical interactions. With the aid of semi-synthetic data,
we show that modeling topical interactions indeed leads to more accurate identi-
fication of event parents and topics. More importantly, HMHP is able to identify
interesting topical interactions in real tweets, which is beyond the capability of any
existing information diffusion model.

3.2 Generative Model

We consider a set of nodes V = {1,...,n}, representing content producers, and a
set of directed edges E among them, representing the underlying graph using which
information propagates. For every edge (u,v), ‘W,, denotes the weight of the edge,
capturing the extent of influence between content producers or users u and v. For
each event e, representing e.g. a social media post, t, denotes its posting time, c, the
user who creates the post and d, the document associated with the post. Event e could
be spontaneous, or a diffusion event, meaning that it is triggered by some recent event
by one of the followees of user c.. The variable z, denotes the unique parent event
that triggered the creation of event e if it is a diffusion event. For spontaneous events,
Z. is set to 0. The generated event e is then consumed by each of the followers of the
user c., thereby triggering them, in turn, to create multiple events and producing an
information cascade. Our generative model can be broken up into two distinct stages
- generating the cascade events, and then the event documents.
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3.2.1 Generating Cascade Events

We first generate (t,, c., 2.) for all events using a multivariate Hawkes process (MHP)
following existing models [84, 48, 59], where the users can mutually excite each other
to produce events. For each node v, we define A,(t), a rate at time t, as a superposition
of the base intensity p1, for user v, and the impulse responses for each event e, that
has happened at time t,, at a followee node c,,.

|He-|
Au(t) = Ilv(t) + Z hcn,v(t - tn) (3.1)
n=1

where h, ,(t — t,) is the impulse response of user c, on the user v, and H;- is the
history of events upto time t. The impulse response can be decomposed as the product
of the influence W, of user u on v, and a time-kernel as follows:

hyo(At) = W, f(At) (3.2)

We use a simple exponential kernel f(At) = exp(—At), as this is not the main thrust
of our work. Following [84], we generate the events using a level-wise generation
process. Level 0, denoted as Iy, contains all the spontaneous events, generated using
the base rates of the users. The events IT; at level [, are generated according to the
following non-homogenous Poisson process

I1; ~ Poisson Z he, .(t —tn) (3.3)

(tmcn,zn)enl—l

3.2.2 Generating Event Documents

The document d, for e is drawn using a topic model over a vocabulary of size |¥|.
For spontaneous events, the topic choice n, depends on the topic preference of the
user c,. We deviate from existing literature in modeling the topic of a diffusion
event. Instead of being identical or ‘close’ to the topic of the triggering event [48], the
diffusion event may be on a ‘related’ topic. We model this transition between related
topics using a Markov Chain over topics, involving a topic transition matrix 7. This
enables us to capture repeating patterns in topical transitions between parent and child
events. Since the topical sequence is ‘hidden’ and observed only indirectly through the
content of the events, we call our model the Hidden Markov Hawkes Process (HMHP).
We have K topics, denoted {{}, assumed to be probability distributions over words
(vocabulary with size | #|), generated iid from a Dirichlet distribution. We also assume
the existence of a topic-topic interaction matrix 7, where 7, again sampled from a
Dirichlet distribution, denotes the distribution over ‘child topics’ for a ‘parent topic’ k.
Since our data of interest is tweets (short documents), we model a document d, as
having a single topic n.. To generate d,, we first follow a Markov process for sampling
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the topic n, conditioned on the topic of its parent event n;,, followed by sampling
the words iid according to the chosen topic. For spontaneous events, the topic for its
document is sampled randomly from the preferred distribution over topics ¢,, for the
corresponding user u.

An important consideration in the design of our model is the use of conjugate priors.
As we will see in the Inference section such priors play a crucial role in the design of
efficient and simple sampling-based inference algorithms. Models such as HTM [48],
which have to sacrifice conjugacy to model data complexity, have to resort to more
complex variational inference strategies.

We summarize the entire generative process below.

1.

The

Generate (t,, ¢, 2.) for all events according to the process described in previous sub-
section.

. For each topic k: sample {; ~ Dir|y|(a)

. For each topic k: sample 7 ~ Dirg(B)

For each node v: sample ¢, ~ Dirg(y)
For each event e at node ¢, = v:

(a) i. if g, = 0 (level O event):
draw a topic 15, ~ Discretex(¢,)
ii. else:
draw a topic 17, ~ Discretex(75,,)
(b) Sample document length N, ~ Poisson(A)

() Forw =1...N,: draw word x,,, ~ Discretey|(§, )

resultant joint likelihood can we written as follows:

K K
PE®, T8 05| By, W= |P@, 1 »x] [Pl x| | P(Ti1B)
vev k=1 k=1
— T
X exp (— / IJU(T)dT) 1_[ pu(te)sce,uéze,o
vev 0 ecE
— T
X n exp (_ / hce,v(T - te)df) n hce,ce, (te’ - te)SCe””SZE”e
ecE veV te o'cE
— Ne
T [T Pt | Paddo®= Ex [T | Pelio )| G

e€E e’ityr <t e€E [w=1

Here, &, , is an indicator for the event e being triggered at node v, 8, , . is an indicator
for event e being parent of event ¢’, At is (T — t.), A(te) is (ter — t.) and T is the time
horizon.
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3.3 Approximate Inference

The latent event variables are the topic i, and the diffusion parent z..The process
parameters to be estimated include the user-user influence values W,,, the topic
transition matrix 7, and the user-topic preferences.

By making use of the conjugate priors, we perform inference using collapsed Gibbs
sampling. We integrate out the topic distributions over words , the topic interaction
distributions 7 and the user-topic preference distributions @ as follows.

P(E,n,z|a,ﬁ,y,W,p)=///P(E,(I),‘T,f,n,z|a,ﬁ,y,W,p)d‘Tdd>d§
o J7J¢

K

=L‘mgwf‘

k=1 e€E

x/‘ﬁwAw—mmmﬁw¢
]

vev eeE

Ne
fpmm%%4a
i=1

K

< [[Treim]

k=1 e€E
<[ ]

veV

<[ 1]

ecE veV

I]HMﬂfWLW

et <t

exp (_ /OT pv(r)dr) 1—1 ’Ju(tE)éce’Uaze,O]

ecE

exp ( / he, (T — te)dr) 1—[ he, e,/ (ter — te)ace/,USZe/,e] (3.5)

e’€E

We can treat each of {,7, and ® separately. So, we first focus only on { part.
Observe that all the {s are independent of each other. And thus, we can leverage this
information to integrate each of them independently. Let ¥, denote the number of

times a word r is assigned a topic k (or belongs to a document corresponding to event
that is assigned topic k). Then,

K N
/ 1_ P(Ck | (X)l—[ HP(Xe,wWe, qu)‘ dc
¢ k= ecE [w=1
= —[/ P({k | a)l—[ np(xewh]e:cl)e] de
ecE |w=1
|7 7 K 1 2 o+ P —
L1 e L T ae= T [ e e
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K
Bla +¥
= l_[ u from Eq. 2.5, 2.6, 2.7 (3.6)

Now we turn our attention to the @ part. Like {, all the ¢,s are independent. Let
Q,  be the number of events at v (without parent) that are assigned topic k. Then,

[D [ [P@, In] | POrldp) >0 do = | /¢ P@, |y | | P(ld,) do,

vev ecE vev ecE
Ce=U
2.=0
1 K
,—1
11/ 551145 []Paib.) i,
vev v 4 k=1 e€E
Ce=U
2.=0
1 / S K a 1 ﬁ Q-1
— d)yuk—l ¢) ]v(,k d¢v — / YUI:' v,k d¢v
gB(V) %g ” ﬂ ’ gB(V) ket
By +Q
= l_[ M from Eq. 2.5,2.6,2.7 (3.7)
v B

On similar lines, we can work with 7 part. All the 7;s are independent. Let &, be
the number of events that are assigned topic t and have parent event with topic k.
Then,

K
/r [[r1®]]] ] P(new:m)aze’ew T
k=1
K

e€E [e’it<t,

~[1 [ »erie) [ paimo am
k=1 Tk eEEk
Nze=
Koo K
— [ 1727 1] (el T2) AT
k, el k k
kI/Tk B(ﬁ)g ' l;l
Nze =k
— ﬁ 1 / ﬁ t_l ﬁ(]"‘fk,ﬁ di — ﬁ 1 / ﬁ t+§k,t_1 di
k=1 B(B) J t=1 o t=1 o k=1 B ) JTi 11 o
K
B(p +
:]_[ B+ &) from Eq. 2.5,2.6,2.7 (3.8)
w1 BB

So now, Eq. 3.4 can be written as:
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K K

B(a + W) B(y + ) BB + &)
p(EJng|a7ﬂJVJ(W>’J): — X — X T —
g B(a) ll;,[ B(y) ,Dl B(B)
<[ |

exp (_ /OT Ilv(T)dT) 1_[ pv(te)6ce’usze’0]

vev ecE
T
66 7 U6Z 7,€
X l_[ 1_[ exp (_/ he, (T — te)dT) n hce,ce; (ter —te) "% ] (3.9)
ecE veV te e’eE

The continuous valued latent variables that remain are the connection strengths ‘W, .
The resulting collapsed Gibbs sampling algorithm iteratively samples individual topic
and parent assignments and the connection strengths from their conditional distri-
butions given current assignments to all other variables until convergence. We next
describe the conditional distributions for sampling the different variables in the algo-
rithm. Algorithm 6 gives the pseudo-code to sample each of the parameters as per the
Gibbs sampling procedure.

Algorithm 6: Gibbs Sampling Algorithm for HMHP Parameters

1 Initialize 7, 2. for all events;
Initialize ‘W, for all u, v in the followers map;
for iter = O; iter ! = maxlIter; iter + + do

N

3

4 for e € allEvents do

5 ‘ UeNP(Ue:k|’Le;z:{X}s(W;“,B:V:P)§
6 end

7 for e € allEvents do

8 ‘ Ze ™~ P(Ze = e/|Et;z—\e: n, a:ﬁ:YJ(WJ’l) >
9 end

10 for (u,v) € Edges do

1 | Wy ~ Gamma(Ny, + o', Ny + ') ;

12 end

13 end

3.3.1 Topic assignment

The conditional probability for topic n, of a diffusion event e (z, # 0) being k is
dependent on the (1) text-content of the event, (2) topical interaction between the topic
of the parent event and the current event, and (3) topical interaction between the current
assigned topic of the event and all the child events of the current event. So, the conditional
probability of assigning topic k to this event e which has a parent event e’ with topic
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k’ is given as:
(=(ze,0))
Br+ N ¢
(iB0) + N =)
KN (=Ce)
Hl';l Hi:(’) ()Bl’ + Nk 4 + l) Hwed Hl 0 (aw zﬁe + l)

N(CE)_l

izo (X Br)+ N,:Ce + 1) H H(Swer tw) + T+10)

P(ne = k | {xe.},nz, = K/, Mz, {ze})

(3.10)

Here N( ) denotes the number of parent-child event pairs with topics k and k’,
(—(ze, e)) denotes all edges excluding (z.,e), C. is the set of edges from event e to
its child events (—C, being its complement), and 1;; is the number of occurrences
of word w under topic k in events other than e. Further, N i =D le s and N is
count of w in d,. The first term is the conditional probability of trans,itioning from
parent topic k’ to this event’s topic k, the second term is that of transitioning from this
topic k to each child event’s topic I’, and the third term is that of observing the words
in the event document given topic k. It is important to observe how this conditional
distribution pools together three different sources of evidence for an event’s topic.
Even when the document words do not provide sufficient evidence for the topic, the
parent’s topic and children’s topic taken together can significantly reduce the uncer-
tainty. The complete proof for the final conditional probability is presented in the
Appendix in Section A.1.1.

For spontaneous events (z, = 0), the conditional probability looks similar to Eqn.
(= e)
Yk + ll

(X yi) + uf;ﬁe)
events by user v with topic k, discounting event e. This captures the probability of

node v picking topic k from its preferred topics.

A.12. Only the first term changes to where 111()_]':) is the number of

3.3.2 Parent assignment

The conditional probability of event e’ being the parent z, of event e looks as follows:

+ N —1
P(z, = €'|Et, 2o, W) (B k=1 X Ry, u, (te = ter) (3.11)
(Xre;Br) + N — 1)

Here the first term is the transition probability from topic k” of the proposed parent
event e’ to this event’s topic k. The second term is the probability of t, being the time
of this event e given the occurrence time t.- of the proposed parent event e’. As with
topic identification, we see that evidence for the parent now comes from two different
sources. When there is uncertainty about the parent based on the event time, common
patterns of topic transitions between existing parent-child events helps in identifying
the right parent.
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The conditional probability of event e being a spontaneous event with no parent is
given as:

(Yk + 1Iue,k - 1)
((Zlkil Yk) + uue - 1)

The complete proof for the final conditional probability is presented in the Appendix
in Section A.1.2.

P(Ze = OlEta Z—e, 11) &

X pue(te) (3.12)

We limit the maximum number of parent candidates for an event to a parameter M
(set to 100 in our experiments) and by limiting the maximum delay to D (set to 1 day).

3.3.3 Updating network strengths

For the network strength W, ,, using a Gamma prior Gamma(a, ), the posterior
distribution can be approximated as follows:

P(Wy = x | E™”), z) o« x exp(—xB1) (3.13)

where o; = (N, +a—1)and 1 = (N, + %)_1, and N, , is the number of parent-child
events pairs between nodes u and v, and N,, is the number of events at node u. This is
again a Gamma distribution Gamma(a1, 7). Instead of sampling W,,, we set it to be
the mean of the corresponding Gamma distribution. Note that in each iteration, we
update W, only for edges that have at least one parent-child influence. The complete
proof for final conditional probability is presented in the Appendix in Section A.1.3.
Most edges have very few (typically just one) influence propagation events. This
makes statistical estimation of their strengths infeasible. To get around this problem,
we share parameters across edges. We group edges that have the same value for the
tuple (out-degree(source), in-degree(destination)). The intuition is that the influence
of the edge (u,v) is determined uniquely by the popularity (outdegree) of u and the
number of different influencers (indegree) of v. We then pool data from all edges in
a group and estimate a single connection strength for a group.

After convergence, the parameters {i » and 7y x- that were integrated out are estimated
using the samples.

3.4 Experiments and Results

In this section, we empirically validate the strengths of HMHP against competitive
baselines over a large collection of real tweets as well as semi-synthetic data. We first
discuss the baseline algorithms for comparison, the datasets on which we evaluate
these algorithms, the tasks, and the evaluation measures, and finally the experimental
results.
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3.4.1 Evaluated Models

Recall that our model captures network structure, textual content, and timestamp of
the posts/tweets, and identifies the topics and parents of the posts, in addition to
reconstructing the network connection strengths. Considering this, we evaluate and
compare performance for the following models:

1. HMHP: This is the full version of our model with Gibbs sampling-based inference.
It performs all reconstruction tasks mentioned above jointly while assuming a
single topic for a post and topical interaction patterns.

2. HTM: This is the state-of-the-art model closest to ours that addresses the same
tasks. The key modeling differences are two-fold: HTM assumes a topical
admixture for each document instead of a mixture, and secondly, it models
parent and child events to be ‘close’ in terms of their topical admixture. As a
result, it cannot capture any sequential pattern in the topical content of cascades.

3. HWK+Diag: This is a simplification of our model where the topic-topic inter-
action is restricted to be diagonal. In other words, each topic interacts only
with itself. This model helps assess the value of topical interaction and serves
as a crude approximation of HTM since the original did not scale for our larger
datasets.

4. HWKXLDA: This is motivated by the Network Hawkes model [59], which jointly
models the network strengths and the event timestamps, and therefore performs
parent assignment and user-user influence estimation jointly. However, it does
not model the textual content of the events. Therefore, we augment it with
an independent LDA mixture model [75] (LDAMM) to model the textual con-
tent. Thus, comparison against this model helps in analyzing the importance
of doing topic, parent and network strength estimation jointly. The network re-
construction component of HWKXLDA is similar to the Network Hawkes model

[59].

3.4.2 Datasets

We perform experiments on the following datasets.

(1) USPol (US Politics Twitter Dataset): This dataset is a set of ~ 370K tweets ex-
tracted for 151 users who are the US Congress Members2. The tweets were extracted
in July 2018 using the Twitter API, and for each member, the API returned at most
3200 tweets. Each tweet in the dataset consists of a timestamp, the user-id, and the
tweet-text(content). The total vocabulary size here is ~ 33000 words after removing
the less frequent words. We use this dataset to evaluate and compare the models
based on their ability to fit the heldout test set (Data fitting quality).

2https://twitter.com/verified/lists/us-congress/members?lang=en
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(2) TweetMarApr14 (Twitter Mar-Apr 2014 Dataset): The TweetMarApr14 dataset was
created by crawling 7M seed nodes from Twitter for the months of March-April 2014.
We restrict ourselves to 500K tweets corresponding to top 5K hashtags from the most
prolific 1M users generated in a contiguous part of March 2014. For each tweet, we
have the time stamp, creator-id, and tweet-text. We use this dataset for discovering
and analyzing topical interactions.

For the datasets, USPol, and TweetMarApri14, the true user-user influence parame-
ters, the topic associated with each tweet, the parent for each tweet, the topic-topic
network, and the topic-topic network parameters are not known to us. Even if the
retweet information is available, notice that the retweet would have the same topic
as that of the tweet as the content is the same for both, the tweet and the retweet
and, retweets form only a small fraction of the parent-child relations that we intend
to infer.

(3) SemiSynth (Semi-Synthetic Dataset): Since we need gold-standard labels to eval-
uate the performance of the models, we additionally create a SemiSynth dataset using
the generative process of our model while preserving statistics of the real data to the
extent possible. From a sample of the TweetMarApri4 data, we retain the under-
lying set of nodes and the follower graph. Then we estimate all the parameters of
our model (the base rate per user, user-user influence matrix, the topic distributions,
resulting topical interactions and the user-topic preferences) from TweetMarApri4
data. The document lengths are randomly drawn from Poisson(7) since 7 was the
average length of the tweets in the TweetMarApr14 dataset. We finally generate 5
different samples of 1M events using our generative model. All empirical evaluations
are averaged over the 5 generated samples (together termed as SemiSynth). The
details of the parameter estimations are as follows. We assign as the parent for a
tweet e from user u the ‘closest in time’ preceding tweet from the followees of user
u for the last 1 day. If this set is empty, then e is marked as a spontaneous event.
Topics to every tweet are assigned by fitting a latent Dirichlet analysis based mixture
model (LDAMM [75]) with 100 topics. From the parent and topic assignments, we get
the network strengths, user-topic preferences, topic-topic interactions, and topic-word
distributions. For W, estimation (as well as a subsequent generation) we applied the
edge grouping described at the end of the inference section and then estimate the Wy,
for an edge as the smoothed estimate for the group. Users who did not generate a
tweet were assigned an ‘average’ base rate and topic preference.

Now we describe the experimental setup for each of the tasks and then the results.

3.4.3 Reconstruction Accuracy

We address three reconstruction tasks: parent identification, network reconstruc-
tion, and topic identification. Since the gold-standard values are not known for the
TweetMarApri4 data, we address these tasks only on the SemiSynth data. For parent
identification (or cascade reconstruction), given a ranked list of predicted parents for
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HMHP HWK-+Diac HWKXLDA

AccuraAcy 0.581 0.362 0.370
RECALL@1  0.595 0.373 0.380
REcALL@3 0.778 0.584 0.589
REcCALL@5 0.838 0.674 0.678
REcCALL@7 0.87 0.73 0.733

Table 3.1: Cascade Reconstruction: accuracy and the recall with top-K (1,3,5,7)
candidate parents.

HMHP HWK+Diag HWKXLDA

MeaAN APE 0.448 0.565 0.552
MEDIAN APE 0.255 0.283 0.287
MEeaN APE (N, > 100) 0.398 0.520 0.496
MEeDbpIAN APE (N, > 100) o0.235 0.265 0.264

Table 3.2: Network reconstruction error (as fraction).

each event, we measure accuracy and recall of the parent prediction. The accuracy
metric is calculated as the ratio of number events for which the parent is identified
correctly to the total number of events. For network reconstruction, we measure the

distance between estimated and true W,,, values. We report the error in terms of the

median Average Percentage Error (APE), defined as },,, M where, W, is the

estimated W,, value. For comparison with HTM, we use Total Absolute Error (TAE)
(the sum of the absolute differences between the true and estimated W, values)
which was used in the original paper. For topic identification, we take a (roughly bal-
anced) sample of event pairs and then measure (using precision/recall/F1) whether
the model accurately predicts the event pairs to be from the same or different topics.

The model that is closest to ours is HTM [48]. However, the HTM assigns each event to
a topic distribution instead of a single topic. Also, the available HTM code cannot scale
to the size of our SemiSynth dataset. Therefore, we compared our model with HTM
separately. We first present comparisons with the other baselines on the SemiSynth
dataset. All the presented numbers are averaged over five different semi-synthetic
datasets generated independently.

Table 3.1 presents the accuracy and the recall@k values for the task of predicting par-
ents, and thereby the cascades. For all the algorithms, the recall improves significantly
by the time the top-3 candidates are considered. For recall@3, HMHP performs about
32% better than both the other baselines, whereas recall@i, as well as the accuracy

66



HMHP HWK+Diag HWKXLDA

PRECISION 0.893 0.123 0.781
REcALL 0.746 0.367 0.752
F1 0.811 0.18 0.765

Table 3.3: Event Topic Identification (P/R/F1)

of HMHP, are at least 57% better than the corresponding number of the baselines.

For the network reconstruction task, Table 3.2 describes the various APE values for
models HMHP, HWK+Diag, and HWKXLDA. Given that in our simulation, event
generation was truncated by limiting the number of events, the last level of events
contributes to negative bias affecting the APE, since the algorithms are still trying to
assign children to these events. We report both the mean and the median errors for
this task. The mean error for HMHP is about 18% lower than other baselines, and
the median error is about 10% lower. We also present the results for the set of nodes
where the number of generated children (N,) is at least 100 (this is an easier task).
Here also the mean APE for HMHP is at least 20% lower.

Table 3.3 presents the result of the topic modeling task, measured by calculating
the precision-recall over event pairs as defined earlier. The results show that HMHP
performs much better than HWK+Diag and at least 5%-6% better than HWKXLDA.
The above experiment confirms that joint inference of topics, parents, and network
strengths by modeling topical interactions is more accurate than that ignoring topical
interactions and also decoupled inference. While the trend is not surprising as the data
was generated using our model, the numbers confirm that when topical interaction
patterns are present in the data, our inference algorithm is able to detect and make
use of these. Also, the improvement over the baselines for all tasks is both significant
in magnitude as well as statistically, showing the importance of topical interactions
and joint inference for reconstructions tasks.

Comparison with HTM

HTM uses a Hawkes process to model the event times, as well as a topic model that
takes into account the dependence of child event topics on parent event topics. While
there is no notion of topic-topic interaction in HTM, it is the closest baseline to our
model. Therefore we do a more exhaustive comparison against HTM. Unfortunately,
the available code that we had for HTM needed approximately half a day for the
ArXiv dataset (~37000 events) and did not scale to our larger datasets. So we
performed experiments on datasets very similar to the ones used in [48]. Also, a
key difference between HTM and HMHP is that in HTM each document is a mixture
of topics (admixture model), whereas in HMHP each document is generated with a
single topic (mixture model). So, we compare HMHP and HTM with respect to the
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WINDOW LENGTH 1000 2000 3000 4000 5000

HTM 2.811 1.982 1.464 1.292 1.351

HMHP 1.297 0.925 0.677 0.646 0.657

Table 3.4: Network Reconstruction Error as TAE (Average over 5 datasets for each
observation window length) (Cycle Graph with 10 nodes)

WINDOW LENGTH 1000 2000 3000 4000 5000

HTM 0.681 0.687 0.712 0.716 0.708

HMHP 0.926 0.924 0.95 0.94 0.935

Table 3.5: Cascade Reconstruction Accuracy (Average over 5 datasets for each
observation window length) (Cycle Graph with 10 nodes)

quality of network and cascade reconstruction capabilities only and not with respect
to the topic identification task. To measure the quality of network reconstruction, the
evaluation metric used is Total Absolute Error (TAE).

We experimented with synthetic data generated both by the HMHP and the HTM
models. We first generate a collection of datasets assuming the HMHP generative
model with two different diffusion networks used in the HTM paper [48].

Circular diffusion network: This dataset is similar to that mentioned in HTM paper
[48] (Appendix B.1), but with |[V| = 10 nodes and k = 10 topics. Topic word distri-
bution vector for each topic, as well as the topic-topic interaction vectors, are drawn
from Dir(0.1) and Dir(0.01) respectively. Data is generated for various observation
window length ranging from 1000 to 5000. For the window length 1000, around 350
events get generated and for window length 5ooo around 1900. Table 3.4 shows TAE
in network reconstruction for HTM and HMHP. The TAE for HMHP is about half of
the TAE of HTM. Table 3.5 presents the percentage of correctly identified parents for
both the models HTM and HMHP. Here as well, HMHP has about 30% better parent
identification capability as compared to that of HTM.

ArXiv Top-200 Authors Network: We also perform an experiment on the ArXiv ci-
tation network dataset. The ArXiv Top-200 authors network dataset is created using
the ArXiv high-energy physics theory citation network data from SNAP:. We restrict

3http://snap.stanford.edu/data/cit-HepTh.html (we have obtained our version of the dataset from
the authors of HTM [48])
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NETWORK RECONSTRUCTION (TAE) CASCADE RECONSTRUCTION
HTM 38.812 0.698
HMHP 23.151 0.951

Table 3.6: Arxiv Top-200 authors Graph - TAE for Network Reconstruction and
Accuracy for Cascade Reconstruction

WINDOW LENGTH 1000 2000 3000 4000 5000

HTM 3.167 2.377 2.014 1.964 1.519

HMHP 1.696 1.200 1.168 1.396 1.243

Table 3.7: Network Reconstruction TAE for Cycle (HTM generated events — short
documents)

ourselves to a graph formed by the top 200 authors in terms of the number of publica-
tions. This graph is similar to the ArXiv Top-200 authors dataset mentioned in [48].
Topic distributions, topical interactions, and the user-topic preferences are sampled
from Dir(0.1), Dir(0.01), and Dir(0.01) respectively. Here as well we compare HTM
and HMHP with respect to the quality of network and cascade reconstruction. Table
3.6 presents the mean of (five datasets) TAE and the parent prediction accuracy values
for both HTM and HMHP models. Here as well, TAE for HMHP is about 40% lesser
than that of HTM and parent prediction accuracy is at least 30% better.

Data Generation using HTM: In this experiment, we generate data according to
HTM model and compare the performances of HTM and HMHP models. The doc-
ument generated for each event is a short document with length sampled from
Poisson(10). Table 3.7 shows the average TAE in network reconstruction for both
HTM and HMHP. Here as well the error in case of HMHP is half of the error in HTM.
Similarly, Table 3.8 presents the average parent identification accuracy for both HTM
and HMHP. The accuracy for HMHP is at least 14 — 15% better than that of HTM.

In summary, we see that HMHP outperforms HTM quite significantly in parent iden-
tification and network strength reconstruction, even when the underlying generative
model is that of the HTM. We believe there are two reasons for this. First, a mixture
model is a more appropriate model for short documents and can be estimated with
greater confidence. Secondly, the topic-topic interaction matrix provides crucial ad-
ditional evidence for parent identification under uncertainty, and this, in turn, leads
to more accurate network strength reconstruction. In our remaining experiments, we
do not evaluate the HTM further since it does not scale for the datasets that we use.
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WINDOW LENGTH 1000 2000 3000 4000 5000

HTM 0.575 0.588 0.61 0.618 0.628

HMHP 0.716 0.730 0.736 0.730 0.748

Table 3.8: Cascade Reconstruction Accuracy for Cycle (HTM generated events — short
documents)

3.4.4 Data fitting quality

Here, we compare the performance of the models based on the goodness of fit of each
model on the heldout set (Test set), i.e. Log-Likelihood (L) of the heldout set.
We perform this task on the real dataset USPol. For each event e in the Test set the
observables are the time t,, the creator-id c,., and the words/content w,. Whereas, the
parent 2, and the topic 1, for each event are latent.

Let X and Y denote the set of events in the Train and Test sets respectively. As per
HMHP, the total log-likelihood of the test set W/, say £ L(HMHP) is given as:

LLHEMHP) = log [ [ | Pte, coswe) | = ) log(P(te, e, we))
ecY eey

= Z Z Z Z (eXP(—ch,,ce)ch,,ce X exp(Ate) X Ty, 5, X P(we|r)e))
ecY e’€Ec.eN(cyr) Ner T
tor <te
+ Z eXP(pceT)ﬂceq/[ce,ne X P(we|ne) (3.14)
Te

Here, the summations over ¢’ € E, over 1./, and over 1, are for the marginalization
over the candidate set of parents, topic of parent event, and the topic of event e
respectively. As mentioned before, 77, , ,, is probability of transition from topic 7, to
topic 7., and thus for a fixed ./, we have 3}, 7, = 1. Also, there is users topic
preference probability U, ,,, and for a fixed user c,, > Ue, x = 1.

Here we are mentioning the likelihood for HMHP only. However, the likelihood of
other models has a similar form.

Notice that, if a candidate parent z, = ¢’ for an event e € Y is in the training set X,
i.e. if ¢’ € X, then parent for ¢’ is inferred at the time of the training. Whereas if the
candidate parent ¢’ is such that ¢’ ¢ X, i.e. ¢’ € Y, then the parent for ¢’ cannot be
inferred. Which means, there is a need to marginalize over candidate set of parents
for ¢’ as well. Doing this recursively, to get the exact L.L of event e € Y, in the worst
case, requires summing over all the possible paths to event e. Therefore, calculating
L L for all the events e € Y would mean iterating over all the possible set of cascades,
which requires O(n!) computation, to the best of our knowledge, where, |Y| = n.
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However, if there is a guarantee that for each event e € Y, each candidate parent
event ¢’ is in the train set X, then calculating the likelihood does not require summing
over all the possible cascades. For each event, the computation is of the order O(d),
where d is the maximum number of candidate parents for any event e € Y. Then
the total computation complexity is O(dn). Bringing in the additional latent variable,
i.e. 7., the topic of event e, the computational complexity is of the order O(dnK),
where K is the maximum number of topics. Note that, as the candidate parent e’ is
in the Train set X, the topic 1./ of the event is inferred at the time of training, thus,
summing over 1,/ is not required. Therefore, our goal here is to create a Test set such
that the parent event for each event is in the Train set and for the events in the Train
set either there are no latent variables, or are inferred.

The semi-synthetic dataset SynthUSPol is generated according to DNHP and thus we
know the original cascades formed by the events in the data. As the generation process
follows a level-wise generation of events (as described in Section 4.2.1), the last level
events are the leaf events of the cascades formed. We use this level information from
the SynthUSPol dataset to classify the events into Train and Test sets.

If the true cascade structure information is available, we could have used the leaf
events as Test set and the non-leaf events as Train set. But, for the real dataset
USPol, the true cascade structure is unknown. Therefore, it is not possible to use a
straightforward approach of splitting the dataset into Train and Test sets, such that
the parents of the test events are in train (with already inferred latent variables).
Instead, we resort to some heuristic to split the dataset into Train and Test such
that the assumption is likely to hold. Note that as an event e goes farther in time
from its parent event ¢’, the probability of generation of event e by the parent event
e’ decreases exponentially, because of the exponential dependence on time. Keeping
this in mind, we split the dataset into Train and Test such that the events in the
Test set are not that far from their some potential parent events in the Train set. To
create the test set, events are processed sequentially. Each event e € E is added to
the Test set Y if and only if at most p,. fraction of its candidate parents are already
in the Test set Y. This ensures that 1 — p. fraction of its candidate parents are
still in the Train set X. Note that increasing (decreasing) pies; results in increasing
(decreasing) the test set size as well as decreasing (increasing) the train set size. To
study the effects of increasing training data size without reducing the test size, we use
an additional parameter 0 < pgqrq < 1 to decide whether to include an event in our
experiments at all. Specifically, we first randomly include each event in the dataset
with probability pgqq, and then the Train and Test split is performed.

So now, given the above mentioned construction of the Train-Test split, the L L(HMHP)
is equivalent to that in Equation 3.14, without the summation over candidate parent’s
topic 1., which is as follows.

LLHAMHP) =Y N > (exp(-We, c)Wey X exp(Ate)Tr, n, X Pwelne)
ey ¢e’€E e

ce€N(cer)
ter <t

71



#Topics = 25

TRAIN(TEST) HMHP HWK+DiaG HWKxLDA
114K(70K) -6750709.066  -7015212.403 -6757375.544
177K(100K)  -8718791.534 -9106946.866 -8734721.678
240K(130K) -10403676.26 -10915951.09  -10423458.8
#Topics = 100
TRAIN(TEST) HMHP HWK+DiaG HWKxLDA
114K(70K) -6807667.698 -7151739.301  -6822410.294
177K(100K)  -8785192.647  -9299455.97  -8816274.845
240K(130K)  -10477518.23  -11133668.14  -10514576.24

Table 3.9: Average Log-Likelihood for Time + Content for Real dataset USPol. (The
Train(Test) sizes mentioned are approximate.)

+ Z exp(pceT)pce(L[ce,ne X P(weme) (3.15)

Me

Also, for all the three models, the sum over the candidate set of parents for each event
is restricted to the events that are not farther in time and are in the Train set X.

Table 3.9 presents the £ L of time and content for HMHP, HWKXLDA, and HWK+Diag
on the USPol dataset with K = 25 and K = 100. The rows indicate the sizes of the
Train and Test when the events are selected in the dataset with probability pgq: set
as 0.5, 0.7, and 1.0 (which is the complete dataset). Then the Train-Test split is
performed with pe set as 0.3, which indicates the maximum fraction of candidate
parents for each event in the Test set.

Observe that as expected all the models, HMHP, HWKXLDA, and HWK+Diag, get bet-
ter at estimating the £ £ with the increase in the size of the dataset across different
values of pg.sc. Similarly, as with the synthetic data experiments, HMHP outperforms
HWKXLDA and HWK+Diag in fitting the time stamps and the textual content. This
says that HMHP i.e. a model that incorporates topical interactions models real cas-
cades better than the two baseline models which do not completely incorporate topical
interactions.

3.4.5 Discovery and Analysis of topic interactions

The final task is to discover statistically significant topical interactions from textual
information cascades and investigate what actionable insights can be drawn from such
topical patterns. We stress that this task can only be performed using HMHP, and
as such, there is no baseline algorithm for this task. We perform this task on the
TweetMarApri14 dataset. The first set of results on the SemiSynth data demonstrates
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Parent topic hashtags

| Child topic hashtags

steelers, browns, seahawks, fantasyfoot-
ball, nfl

mlb, orioles, rays, usmnt, redsox

renewui, ableg, aca, stopcombatingme,
obamacare

uniteblue, tx2014, saysomethingliber-
alingwords, tcot, gophatesvets

idf, rnb, bds, gaza, israel

‘ russia,iran,syria,crimea,ukraine

thewalkingdead, theamericans,
uponatime, houseofcards, tvtag

once-

arrow, agentsofshield, truedetective, long-
islandmedium, tvtag

egypt,gaza,israel,syria,iran

‘ kiev, putin, russia, crimea, ukraine

rterugby, rugby, sixnations, engvwal, 6na-

coys, arsenal, cfc, mufc, facup

tions

Table 3.10: Sample hashtags from asymmetric topics pairs.

that when the data has realistic parameters but is generated from the model that
we hypothesize, HMHP outperforms the baselines. The generalization experiments
further confirm that even for real data HMHP performs better than the baselines,
suggesting that real data indeed better matches our modeling assumptions about
interacting topics. This lends credibility to the topical interactions discovered by
HMHP model, even though there is no ground truth for these.

In order to demonstrate the usefulness of the topic-topic interaction matrix, we per-
form three types of analysis using this matrix. We first select a set of topic-topic
relationships as anecdotes. Next, we demonstrate how we can get insights on topic
drift in cascades using a hubs and authorities analysis on the topic-topic interaction
matrix. Finally, we use a personalized PageRank based analysis to discover related
topics for any given topic and discuss how this can lead to new strategies for user tar-
geting and influence maximization problems for spreading conversations about any
topic.

Anecdotal parent-child topics

To identify interesting examples of topic-topic interaction, we first ensure that the topic
pairs do not correspond to the same underlying topic that our model inappropriately
partitioned into multiple finer topics. Such a phenomenon would cause a block-
diagonal structure in the topic-topic interaction matrix. We first identify the most
asymmetric topic pairs by sorting using 7 — Txk. Such pairs cannot conceivably
come from topic splitting. To illustrate the topics, we find their top five hashtags.
Table 3.10 shows examples of such topic pairs. In the first row, the parent and child
hashtags are related to American football and baseball. These are different topics but
indicate that tweets related to a particular sport (football) trigger tweets about some
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Parent Tweet

‘ Child Tweet

#MASalert Statement By Our Group CEO,
Ahmad Jauhari Yahya on MH370 Incident.
Released at 9.05 am/8 Mar 2014 MY LT

Missing #MalaysiaAirlines flight carrying
227 passengers (including 2 infants) of 13
nationalities and 12 crew members.

Investigators pursuing notion the 777 was
diverted “with the intention of using it
later for another purpose.”

If #MH370 did fly for an additional 4 hrs
as reported by WSJ, it could be anywhere
in this circle.

Wanna be a part of GOTV in the first spe-
cial election of year? Hop on our caller for
Alex Sink in Florida: #FL13

Why #CPAC Isn’t As Grassroots As You
Think: #independents #moderates #tcot
#gop #ccot #tlot #pjnet #uniteblue #p2

Certain people are ruining their reputa-
tions tonight-really sad! #Oscars

I should host the #Oscars just to shake
things up - this is not good!

Dave Gallo and Bob Orr on the mysteri-
ous case of #MH370, Robert Wagner, and
@JaneFonda tonight at 11pm ET on @PBS
RT

@motherfuton: Best explanation I've read
in regards to the missing Malaysia flight,
#MH370.http://t.co/KdSgxUepfV

mt@conor64 Obama Is Complicit in Cover-
ing Up the Truth About #CIA Torture #p2
#tcot #topprogs #teaparty #uniteblue

The moral of ‘Green Eggs and Ham’ is lost
on Ted Cruz and Sarah Palin. #UniteBlue
and #TryNewThings

Gellman:My definition of whistle blow-
ing:are you shedding light on crucial de-
cision that society should be making for
itself. #snowden

Gellman we are living inside a one way
mirrogthey & big corporations know more
and more about us and we know less about
them #sxsw

Table 3.11: Example Parent-Child Tweets

other sport (baseball). Alternatively, there can be users who participate in discussions
related to both sports. Table 3.1 shows a few actual parent-child tweets from the
selected asymmetric topic pairs. It is important to stress that these tweet pairs are
not retweets. Also, though all these tweet pairs clearly on related topics, often (like
the first pair about MH370) these do not share any hashtags or even other significant
words, which some naive strategy might use to detect such relationships. Therefore,
in both cases, we see evidence of interesting topic interactions that are discovered by
our model.

Such significant topical interactions can then serve as input to various further tasks
e.g. getting a global view of ongoing discussions on some events, possibly better
estimations of which topics are going viral, etc. Indeed, we can argue that topics,
rather than hashtags, represent the correct granularity for such analysis.
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Source Topic hashtags ‘ Hashtags from top-3 transitioned topics

{ukraine, crimea, russia, | {utpol, raisethewage, cdnpoli, obamacare, aca}, {irs,
putin, syria} tcot, teaparty, gophatesvets, uniteblue}, {worldbookday;,
amwriting, books, litfestlive}

rhlaw, clinton, r4today, | {irs, tcot, teaparty, gophatesvets, uniteblue}, {sound-
ecommerce, cademi4} cloud, hiphop, mastermind, nowplaying, music}, {iahs-
bkb, nba, iubb, lakers, rockets}

{agentsofshield, arrow, | {idol, bbcan2, havesandhavenots, pll, thegamebet}, {tv-
tvtag, supernatural, | tag, houseofcards, agentsofshield, arrow, theamericans},
chicagoland} {soundcloud, hiphop, mastermind, nowplaying, music},

Table 3.12: Example related topics using personalized pagerank. (After removing
some top generic topics)

Modeling Topic Drifts via random walks

One of the prominent applications of information cascade modeling is in targeting—
how to intelligently select a small set of triggers in the network that can encourage
conversations/tweets about topics or hashtags that the advertiser is interested about.
We claim that our model, by capturing the topic-topic interactions, provides alternate
topics or hashtags for such advertisers to exploit. To demonstrate this, we choose a
few of the topics and then run personalized pagerank [72] from these topic nodes on
the Markov chain underlying the topic-topic interaction matrix. Table 3.12 shows the
results of running personalized PageRank from example start topics. For each topic
in the first column of Table 3.12, the second column contains the 3 topics (other than
the topic itself) with the highest personalized PageRank. For the examples in the
first 3 rows, most of the top 3 transitioned topics are the high authority score topics
(more general ones). However, after removing some of these topics from the transition
matrix, the top 3 transitioned topics (right column last 3 rows) have topics that are
directly related to the start topic. For e.g. the start topic in the fourth row is about
Russia, Syria, and Ukraine, and the transitioned topics have hashtags that are related
to politics in the US. This gives a hint about the connection between the US, Russia,
Syria, and Ukraine in Twitter conversations. Similarly, in the last row, the start topic
is about TV shows, and the transitioned topics also contain hashtags which are about
some other TV shows.

One interpretation of this is that the average conversation that starts with any topic
from the first column, can be expected to drift to one of the topics in the corresponding
row. While this knowledge can have many applications, it is particularly useful for
advertisers who are interested in promoting specific keywords or hashtags.

To summarize, using multiple semi-synthetic datasets we show that the HMHP sig-
nificantly outperforms state-of-the-art baselines including the HTM in cascade and
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network reconstruction by virtue of modeling topical interactions and joint inference
of parents, topics and network strengths. It also generalizes significantly better for
real Twitter data, demonstrating that topical interactions is indeed a better model for
the real cascade of tweets. The scalability of HMHP makes it amenable to real web-
scale applications. Finally, we analyzed the topical interactions identified by HMHP to
provide guidelines about how this could be used for influence maximization, as well
as unearthing new insights about topic drift in cascades.

3.5 Related Work

There has been a lot of work on network reconstruction based on the observations
of event times [36, 89]— these models often ignore the content information of the
events. Our work shows that such content information, when present, can profitably
be used for a better estimation of the network strengths. [4] studies a related model in
which activation times and some side information (e.g. tweet content) about cascades
are observed, but not the set of users.

The Dirichlet Hawkes Process (DHP) [28] and the Hawkes Topic Model (HTM) [48]
both extend Hawkes Processes to model textual content associated with events. How-
ever, neither captures topical interactions. The DHP lacks the notion of a unique parent
for any event and also any notion of users or networks. Our model is most similar to
the HTM. But while the HTM forces parent and child events to be topically close, it
does not capture any parent-child topical patterns beyond this. One consequence is
that no two events are topically identical, while we can group events according to as-
signed topics and, additionally, parent-child relations according to topic pairs. HTM’s
document model is an admixture of topics, which is more powerful in general, but in
the context of short documents such as tweets, this complexity is not as necessary, as
we demonstrate in our experiments.

Various generalizations of Dirichlet Process such as Hierarchical Dirichlet process
(HDP) [82] and variants of Chinese Restaurant Process (CRP) such as Nested CRP
(nCRP) [87], the Chinese Restaurant Franchise Process (CRFP) [64] in combination
with Hawkes processes have also been explored in literature. Seonwoo et al. [82]
proposed Hierarchical Dirichlet Gaussian Marked Hawkes process (HD-GMHP) that
reconstructs narratives and thread structure of discussions from the text data. HD-
GMHP uses Hawkes process to model the temporal information of events, the textual
information is modeled using Gaussian distribution (as similar to that in HTM), and
the trigerring relationships are modeled using mixture of Gaussians.

In [87] the authors proposed a model named Nested Chinese Restaurant Process with
Hawkes Gaussian process (nCRP-HGP) which combines the advantages of hierarchical
nonparameteric Bayesian models (nCRP) with Hawkes processes to model the tempo-
ral and textual information of the events. nCRP-HGP incorporates the events in which
multiple senders and receivers are involved, and exploits the properties of the senders
and receivers for better modeling of the temporal information and textual content.
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Mavraforakis et al. [64] developed Hierarchical Dirichlet Hawkes Processes (HDHP)
model by replacing Chinese Restaurant Process (CRP) with a Chinese Restaurant
Franchise Process (CRFP) which is capable of modeling streaming data from multiple
users. The model uncovers the various latent learning patterns from the series of
actions that users take on platforms like Stack Overflow and Wikipedia while gathering
some new information on some topic.

All these models ([82, 64, 87]) are powerful in terms of modeling the textual content,
but, either, as similar to DHP does not take into account the notion of users or network
over users or as in HTM, forces parent-child text content to be topically close, which
does not help in capturing topical relationships between parent-child topics.

In addition to the above mentioned models, models for sequence data have blended
Markovian dynamics with topic models [41, 43, 27, 5]. This thread, is focused on
modeling richer sequential structure within a single document, but has not looked at
cascades of events with associated timestamps and networked users. Our contribution
is in merging this line of research with the modeling of information cascades.

3.6 Conclusion

In summary, we propose a generative model for information diffusion cascades ac-
counting for topical interactions, by coupling a Network Hawkes process with a Markov
Chain over topics for diffusion paths. This enables us to fit real Twitter conversations
better, and the use of topic interactions and collective inference using our model also
leads to a more accurate reconstruction of network strengths, diffusion paths, and
event topics. Using comparisons on a number of datasets, we show that HMHP out-
performs the baselines on the standard metrics. On top of this, using HMHP, we are
able to derive insights about topical interactions, which existing models cannot.
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Chapter 4

Dual Network Hawkes Process

4.1 Introduction

In this chapter, we address the problem of modeling text-based information cascades,
generated over a network of user nodes. There exists a number of models that uses
a variety of non-homogeneous point-processes to model such cascades, with rate
parameters capturing user-user influence [59], user-topic affinity [48], etc. Recent
work [17] also incorporates topic-topic interactions in modeling the textual content.
However, in these models, the content does not influence the response rate. As a result,
two related and important questions are yet unexplored— (1) how to incorporate the
influence of topics on the event rate? and (2) how to decompose the overall responsiveness
for a pair of users in terms of the responsiveness on different topics? For e.g., during
political elections, two politically inclined users are likely to interact faster on politics.
However, their interaction rate in fashion related conversations can be quite different.

In this chapter, we address these two issues by extending the Network Hawkes Process
[59] which executes over a one-dimensional network over users, to propose a Dual-
Network Hawkes Process (DNHP) which executes over a two-dimensional network over
user-topic pairs. Individual events now trigger for a user-topic pair. Each such event
spawns a new Poisson process for every other user-topic pair in the neighborhood,
whose rate is determined by the Once triggered, the cascade now proceeds via the
Hawkes process that has as parameters the influence that one user-topic pair has
on another. After the event generation step, the process becomes asymmetric for
users and topics. While the users are directly observed, the topics are latent and
only the textual content of the events, generated i.i.d. conditioned on the topics,
are observed. The Network Hawkes Process is recovered as a special case of this
model, (by disregarding the event content) when the number of topics is 1 (effectively
observable).

We capture the influence between two user-topic pairs as a product of two different
parameters, (a) the connection strength between the users, and (b) the connection
strength between the topics. This decomposition leads to significant parameter shar-

79



ing between individual point processes. The rate for any two users uj,u; and a
specific pair of topics t1, ty shares the topic-topic component of the parameter with
the rate for two other users u}, u), and the same pair of topics. This means that for
predicting the reaction time for (user us, topic ty) for (user u;, topic t1), we can use
as evidence reaction times for other pairs of users on the same topic pair, even when
uy and uy have never interacted before on any topic. Similar benefits are obtained for
two different topic pairs and the same user pair. Thus in addition to being closer
to the generation of real-life topical information cascades, the Dual-Network Hawkes
Process promises significantly better generalization based on limited training data via
parameter sharing.

Using the model, we address the task of recovering the user-user and topic-topic
connection strengths (up to their product), along with recovering the latent topic
and parent (or trigger) event for each event. For the user-user graph, we assume
the structure to be known and the edge weights We consider the topics also to be
connected as a weighted graph, where connection strengths between topics determine
how quickly conversations transition between topics. Unlike the user graph, the
structure of the topic graph is unknown and needs to be recovered along with the
edge parameters. A significant challenge for parameter estimation is that the user-
user and topic-topic weights are intrinsically coupled in our model and cannot be
integrated out analytically. In fact, we show that the topic-topic weights and user-
user weights are only identifiable as their product and not individually. We address
the coupling issue by showing that the posterior distribution of the user-user (topic-
topic) weights is conditionally Gamma distributed given the topic-topic (user-user)
weights. Based on the conditional distributions, we propose a Gibbs sampling based
inference algorithm for these tasks. In our inference algorithm, the update equations
for the user-user and topic-topic weights become coupled, thereby allowing the flow
of evidence between them.

Experiments over semi-synthetic and real-world data show that our model outperforms
the state-of-the-art models in terms of topic identification, parent identification as
well as user-user connection strength recovery. In addition, we also show that the
generalization performance of our model is much better with respect to the baselines.

4.2 Dual-Network Hawkes Process (DNHP)

We consider text based cascades generated by a set of users V = {1,2,...,n}. There
is a set of edges & among users V, over which these text-based cascades are formed
or the information propagates. Each edge (u, v) is weighted as ‘W, ,, which indicates
the extent of the influence of user u on user v. We assume that the unweighted graph
over the users is known or observed but the weights ‘W, , are not. For each event e,
where an event can represent a tweet or a social media post, the time at which the
event was created t, is observed along with the user c., who created the event, and
the document d, of the event. Each event has a latent variable ), which represents the
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topic of the event from which the document d, is sampled using the topic-model over
the vocabulary 7. Along with the latent topic 1., there is one more latent variable z,
associated with each event. The latent variable z, denotes the parent event of event
e, i.e. the event that triggered event e. The events which are triggered by some other
event are termed as diffusion events, and if an event is not triggered by any other
event, then it is termed as spontaneous event. Notice that the diffusion events lead
to the formation of cascades, and the spontaneous events represent the start of the
cascade.

Motivated by the HMHP model, which posits the existence of the topic-topic interaction
matrix, here as well we assume the existence of the topic-topic graph over the nodes
[K]. The topic-topic graph as well as the topic-topic interaction strengths 7 - for
every pair of topics k, k’ € [K] are unobserved. The topic-topic interaction strength
between a pair of topics represents how quickly the conversations transit over these
topics.

Now, to model the response rate of an event as a combination of user and topic, we
define a new graph G with V as a set of nodes, where each node of the graph is
indexed by a user-topic pair ¢ = (u, k). As opposed to the models HMHP [17], HTM
[48], Network Hawkes [59], etc., where the Hawkes process is defined for each node
of the user-user graph, here Hawkes process is defined for each node ¢ = (u, k) of the
graph G. For every pair of nodes ((u, k), (v, k’)) in the graph G an edge exists if the
corresponding entry of the matrix ‘W ® 7 is non-zero, where ® denotes Kronecker
product. Therefore, now each event e which is generated by the Hawkes process at
a node (u, k) of the graph G is consumed by the neighbors of the node (u, k) in the
graph G and tries to trigger multiple events at each of the neighbors resulting into a
formation of cascade. The complete generation process for the DNHP can be described
in two phases, i.e. modeling time and topic and modeling textual content. Following is
the description of each of the phases.

4.2.1 Modeling Time and Topic

Let E = {e} be the set of all generated events. Each event e is defined using a tuple
e = (te, Ce, Ze,d.), Where, t, is the time at which event was generated, z. indicates
the unique parent event of e (i.e. the event that triggered event e), and d, is the
textual content associated with event e. Here, ¢, = (c., 1), where c, € V, is the user
associated with the event e and n, € [K] is the topic associated with the event. For
any event e, all the events e’ such that t, < t, and c,, € N(c.), where N(c.) denote
the set of neighbors of ¢, in the user-user graph, are the set of candidate parent event.
In this phase, (t, c., 2.) for each event is generated using the Multivariate Hawkes
Process (MHP) on graph G following the existing models ([84, 59, 48, 17]).

Let H;_ denote the set of all events generated prior to time t. Then, A,(t), the intensity
function for v is given by the superposition of the base intensity of node v € G and
the impulse response of the events e € H;_ generated by the node c, in the history
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of events. Ay(t) = piy(t) + Yeeqr_ he,v (t —t.). Here, u,(t) is the base intensity which
is independent of the history of events, and hg,, captures the impulse response on
node v because of an event at node c¢,. The base intensity for node v = (v, k) is
defined as py(t) = m,(t) X pr(t), where, p,(t) is base intensity associated with user
v, and pi(t) is the base intensity for topic k. The impulse response hy, with nodes
u = (u,k) and v = (v, k’) can also be further decomposed into product of user-user
influence term ‘W, ,, topic-topic interaction term 7 ) and a time-kernel term f(At)

as hyy(At) = Wiy Tir f(AL).

To generate events with the intensity function A,(t), we follow the level-wise gen-
eration of events as described in [84]. Let, I1y be the level 0 events which are
generated with the base intensity of the nodes v € G, i.e. py(t). Then, the events
at level £ > 0 are generated as per the following non-homogeneous Poisson process:
[Ty ~ Poisson (Z(te,ce:ze)enf—l he,+ (t, t.)) This process can be described with the help of
the pseudo-code as follows: for each event e = (t,, c,, 2.) € Ily_1, for each neighbor
v € G of node c., generate events at node v according to non-homogenous Poisson
process — Poisson(hg,(t — t.)).

We would like to highlight to the reader that in this work we model the time-kernel
term f(At) using a simple exponential function i.e. exp(At). We understand that there
has been a number of recent works that model the time-kernel efficiently ([48], [28],
[59]), but the main aim of this work is not that.

4.2.2 Modeling Documents

Now, to generate the document d, for each event e the only information required
is the information about the topic 1, associated with the event, and the topic-word
distribution for topic .. However, in the first phase of the generation of events, for
each event, the topic is identified based on the ¢, = (c,7n.) on which the event is
generated. Thus, the for each event e = (t,, (e, 1e), 2¢), the document is generated by
sampling Poisson(10) words from the topic-word distribution $n,-

The joint probability for the model is given as:

P(E,(W,(]-;C, n,z | a,H,a, a2u81u82)

T
= 1—[ exp (—/0 p\v(r)dr) nﬂw(te)a%"v‘s%‘)]

veV ecE
T
<] || ] |exp (— / hce,\v(m)dr) [ ] Rover (8te)
ecE veV te e'eE
Ce’ =V
Zor=¢€
K N,
T Tr@ ox]] ﬂp<xe,w|cek,ccek>]
k=1 ecE |w=1
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Here, the term on the first line describes the probability of generating spontaneous
events. The term on the second line describes the probability of the formation of
cascades. The first term on the third line, indicates the probability of sampling topic-
word distribution {,, for each topic k from a Dirichlet(a). And the last term there is
the probability corresponding to generating document for each event. The terms on
the last line correspond to the probability of sampling W, , (user-user influence) and
Tk (topic-topic interactions), which we consider as sampled from Gamma priors.

4.2.3 Identifiability in DNHP

We notice that user-user and topic-topic weights are not separately and individually
identifiable in our model - i.e. the increased rate between two user-topic pairs can
be explained either by increasing the user-user weight or the topic-topic weight. As a
result, only the product of a user-user weight over topic-topic weights is identifiable,
which is what we estimate in our experiments.

We formalize this observation in the following lemma.

Lemma 20. Let 6 > 0 be any constant. For any set of events E and any set of parameter
values of W, T, ¢, n, 2, the probability P(E | W, T,{,n, 2) is equal to the probability
P(E | OW,7/6,¢,n,2), i.e. where W and T have been replaced by 6 W and 7/6
respectively.

The proof can be obtained by simply writing the actual expression for the probability
and is hence omitted.

4.2.4 Stability of DNHP

One of the important properties of the Hawkes processes which makes it a perfect
fit for the cascades of posting events is the mutually exciting property. Each event
that has occurred in history adds a non-negative impulse response to the intensity
function and thus increases the likelihood of the new events in the future. Because of
this recurrent nature of the Hawkes processes, we need to ensure that the generative
process does not lead to a generation of an infinite number of events.

Lemma 21. To ensure that DNHP does not generate infinite number of events it is sufficient
to ensure that Amax(A © W) < 1 and Apax(B © T) < 1, where, Apqy denotes highest
eigenvalue, A and B are the adjacency matrices for the user-user and topic-topic graphs
respectively, and ‘W and T define the user-user influence and topic-topic interaction
matrices respectively.
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Proof. As described in [21] and [59], for the system to not generate infinite number
of events the condition that is to be satisfied is: Apax = max |eig(A © ‘W)| < 1 where,
A is the adjacency matrix and ‘W matrix specifies the weights over the edges of A
and eig denotes eigenvalue. On the similar lines, for DNHP the condition becomes
Amax = max |eig((AO W)®(B®T))| < 1 where, A and B are the adjacency matrices
for the user-user and topic-topic graphs respectively, and W and 7 define the user-
user influence and topic-topic interaction matrices respectively. In order to satisfy the
above condition it is sufficient to ensure that Apx(AO W) < 1and Apx(BOT) < 1,
i.e. the maximum eigenvalue of each of the matrices is bounded by 1. However, in our
case, the matrix A is fixed and the priors are used for the user-user influence values
“W,.». Additionally, the graph B is assumed to be a complete graph and the priors are
used for the topic-topic interactions weights. To favour conjugacy in the posterior of
the ‘W, and T, a Gamma prior is selected for both ‘W, and 7. Given that
A is fixed we claim that Ap.x(A © W) < dmaxp;‘ndgx + o;‘ngx dmax, Where dp.x is the
maximum degree in A, and p?¥ and 0¥ are the maximum mean and variance of the
Gamma priors used for the user-user influence values “W,,,. Thus, to have the A,y of
(A © W) to be bounded by 1, it is enough to choose appropriate fiymax and omay such

that dmaxllmax + Omax Vdmax < 1.

Similarly, to ensure that the Ay.x(B © 7) < 1, notice that Apa.x(B © 7) < Kp?,;ax +
of VK, where p?_ and o7 are the maximum mean and variance of the Gamma
priors used for the topic-topic interaction weights 7 x- for all k, k" € [K]. And thus,
choosing a Gamma prior with appropriate values of u’. and o7 should give the

required condition. O

4.3 Approximate Posterior Inference

As similar to that of the HMHP model, the latent variables associated with each event
in case of DNHP are the parent of an event (z.), and the topic of the event (7.).
The variable z, for each event e can be either 0 indicating a spontaneous event or
some event ¢’ in the history of events. Along with these latent variables, the user-user
influence matrix ‘W, the topic-topic interaction matrix 7, user base rate for each user
and topic base rate for each topic have to be estimated.

As the exact inference is intractable, we perform inference using the Gibbs sampling
algorithm. As opposed to the HMHP model, here the topic-topic interaction strengths
Tk are tightly coupled with the user-user influence ‘W, , terms in the likelihood
and cannot be integrated out analytically. I.e. DNHP does not enjoy the conjugacy
property, and thus the topic-topic interaction terms are to be sampled for each pair of
topics. However, it turns out that the user-user influence ‘W, , is Gamma distributed
conditioned on topic-topic interactions and the topic-topic interaction 7 i is Gamma
distributed conditioned on the user-user influence values. Thus, we use Gibbs sam-
pling to iteratively sample the individual topic assignments (7.), parent assignments
(z.), the user-user influence W, ,, the topic-topic interaction strengths 7 i/, user base
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rate 11, for each user and topic base rate p1 for each topic from their conditional distri-
butions given current assignments to all other variables until convergence. Following
are the conditional distributions required for sampling the different latent variables.

Parent Assignment: The parameters on which the assignment of the parent event
is dependent are: (1) influence of the user c.s of candidate parent event e’ on the user
ce of the current event e, (2) interaction between the topics 1., and 1. of the candidate
parent event and current event respectively, and (3) the time of occurrence of candidate
parent event and current event. Therefore, once these parameters are fixed, then
the conditional probability of event e’ = (t.r, (ces, k'), 2.-) being a parent of an event
e = (te, (e, k), 2¢) is given as:

P(Ze = e’l(W: 7—) & eXp(_(M/cer,ceTnez,qe)(chz,ceﬂe/,nef(Ate’) (4-2)
Similarly, conditional probability of an event being spontaneous can be given as:

P(z, = el|pe,, iy,, T) o< exp(=T e, ty, )Hc, Hn, (4.3)

Notice that the denominator or the total probability is same for all the candidate
parents and thus we have the proportionality sign the above equations.

Topic Assignment: Notice that the parameters on which the assignment of the topic
variable 7, for an event e is dependent on are: (1) interaction between the topics 1,
and 1. of the candidate parent event and current event respectively (2) influence of the
user c. of candidate parent event e’ on the user c. of the current event e, (3) the content
d. of the current event e, (4) interaction between the topics 1. of the current event and
the topic ny for all event f which are child events of the current event, and (5) influence
of the user c, of current event e on the users cy where events {f} are the child events
of event e. Therefore, once these parameters are fixed, the conditional probability of
assigning a topic k to an event e = (t,, C. = (Ce, ), Ze) by user c, when the parent
event is €’ = (tor, Cer = (Cer, Ner), Zer) s given as:

1

w
Hwed H a, + ‘Fe +1

HNde Swey G + L+
X exp (_(M/Ce”(:e(];le’:ne) (Me’yceﬂe”nef(Ate)
<[ |exp (~Wees Ty ) Weees T F080)| @)

feE
zf=e

P(ne = klz, W, T, a) «

Here, T is the count matrix of dimension K X ¥ storing the count of each word for
each topic. T, indicates the count of word w in topic k excluding the counts from
event e. The ﬁrst term on the RHS is related to the content of event e, the second term
is related to the influence of parent event on the current event, and the third term
is related to the influence of current event on the child events f for generating event
with topic njy. When event e is a spontaneous event, the conditional probability has a
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similar form with an exception to the second term, which is given as exp(—p, T )i, Hx,
indicating the probability of generation of an spontaneous event with topic k.

User-User Influence(‘W,,): The conditional probability of influence of user u on v is
dependent on the number of times the users u and v interacted. To be specific, it is
dependent on the number of times a user u generated some event and tried to trigger
event at user v (which is related to N, — the number of events by user u) and the
number of times user v got influenced and generated an event (which is N, , — the
number of interactions between u and v). So, the conditional probability for ‘W, , can
be given as:

T
P(Wyu | T, 2) o< P(Wyylas, 1) - exp (_/ h”,V(Af)dr) hy, e/(Ate')(SZe"e
1,1 n . l_[ C

e€E e’€E
Ce=U Co’ =V

o« P(Wilaz, B1) X —[ exp [-W,, ZTe,k’ —[ (Wuqu,:‘”‘,',:,

ecE k! é’EE

Ce=U Cr=v

Nuy u,k),(v,k’

o« P(Wyplai,B1) X |exp | =Wy Z Ny, Z Tk ) W, 1_[ 7—’}:’5«'0( k)

. k K’ k,k’

Nup

o« P(Wypla, B1) X ((Wu,u’ exp (—B W) c) (4.5)

where, B = Y (Nuk 2 Tiwr) and C = [Tpp ‘Tg (WBCE (term independent of W,,).
Therefore, ‘W, , is Gamma(a*, *) distributed with parameters a* = N, + a3, and

B* = B + B given that the prior is Gamma.

Topic-Topic Interaction(7 /): The conditional probability of interaction between
topics k and k’ is given as:

P(Tr W, 2) o< P(Ty k|2, B2) X (exp (=BT k) ﬁikc) (4.6)

where, 8 = ¥, (Nyx X, W) and C = [, ‘Wlfv LK) (term independent of T k).
Therefore, Ty x is Gamma(a*, B*) distributed with parameters a* = Ny, + @3, and
B* =2, (Nu’;< > (Wu,v) + B2. Here, Ny - is the number of times an event with topic
k triggered an event with topic k’. The proof for this is completely similar to that of
the user-user influence W, .

For K topics the additional number of parameters for DNHP as compared to HMHP is
O(K?) (i.e. because of the matrix 77), which is a constant for a fixed K. However, the
inference of these additional terms has another advantage. Note the interdependence
between the user-user influence and the topic-topic interaction in the inference equa-
tions - one directly influences the other. Both are conditionally Gamma distributed
given the other. In fact, different user-user weights influence each other via topic-topic
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weights. This results in a more efficient sharing of evidence across different user-user
and topic-topic weights. In contrast, user-user and topic-topic weights in HMHP and
user-user weights in the Network Hawkes model are conditionally independent given
the event parents.

Base Rate Inference: The estimates for user base rate 11, Yv € U and topic base rates
tx Vk € K are given as:

ngspon) Nlispon) o
e —— Hik = 4.7
CT Y mk T Y
keK vev

where, N7 is the number of spontaneous events by user v, N,iSp °") is the number
of spontaneous events that have topic k, and T is total time for which the events are
observed.

4.4 Experiments and Results

In this section we validate the strengths of DNHP empirically. Here we first describe
the models with which we compare the performance of DNHP. We also then describe
the datasets and define the tasks to evaluate the performances of the models. All the
experiments are performed on a machine with 32 cores, 2.10GHz Intel(R) Xeon(R)
E5-2620 CPU, and 256 GB RAM.

4.4.1 Models Evaluated

(1) HMHP: HMHP [17] is a model (described in the previous chapter) for generation of
text-based cascades and incorporates user temporal dynamics, user-topic preferences,
user-user influence, along with topical interaction in the model. As similar to the
other models in the literature, for eg. [46], [84], [59] and [48], in HMHP as well
the generation of time stamp of an event is independent of the topic associated with
the event. That is the topics here do not influence the time of generation of an event.
In HMHP, the timestamps for all the events are first generated based on Multivariate
Hawkes Process (MHP) and then the topics are sampled for each event independently
of the time. We evaluate and compare the performance of HMHP with DNHP based
on the generalization and reconstruction performances.

(2) NHWKS: Network Hawkes [59] model jointly models event time stamps and the
user-user network strengths. This model infers user-user influence and also the parent
event for each event. As opposed to HMHP and DNHP, NHWKS does not model text
content. Therefore, we evaluate and compare the performance of NHWKS to DNHP
with respect to its ability to estimate the £ £ of time of the events in the test set.
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(3) DNHP: This is our model (described in this chapter) with Gibbs sampling based
inference algorithm. In this, the topic-topic graph is considered as a complete graph
and the weights over all the edges are considered to have the same Gamma prior.

4.4.2 Datasets

We evaluate the performance of the above mentioned models on the following two
datasets:

(1) USPol (US Politics Twitter Dataset): This dataset is a set of ~ 370K tweets ex-
tracted for 151 users who are the US Congress Members'. The tweets were extracted
in July 2018 using the Twitter API, and for each member, the API returned at most
3200 tweets. Each tweet in the dataset consists of a timestamp, the user-id, and the
tweet-text(content). The total vocabulary size here is ~ 33000 words after removing
the less frequent words. The true user-user influence parameters, the topic associated
with each tweet, the parent for each tweet, the topic-topic network, and the topic-
topic network parameters are not known to us. Even if the retweet information is
available, notice that the retweet would have the same topic as that of the tweet as
the content is the same for both, the tweet and the retweet and, retweets form only a
small fraction of the parent-child relations that we intend to infer.

(2) Semi-Synthetic Dataset (SemiSynth): As for the USPol dataset, the gold standard
is not available, we generate the SemiSynth datasets using the DNHP generative model,
and we do this for two different user-user graphs.

(a) SynthUSPol: Here the user-user graph is the same as the USPol dataset (i.e. graph
with 151 users). The user-user influence and topic-topic interactions matrices are
sampled using Gamma priors. For each edge (u,v) € & W,, ~ Gamma(1.5,0.2).
Topic-Topic graph is sampled from G(K,p) with K = 25, and p = 0.3. For all
(k, k"), where k,k’ € [K], Tk ~ Gamma(2,0.2). For all u € U and k € [K],
Iy = px = 0.003. For all the users and all the topics, the base rate is set to 0.003.
Here, K = 25, |¥| = 10000, and the topic-word distributions are sampled from
Dirichlet(0.01). For each event e, the document d, consists of Poisson(10) words
sampled independently. Using this configuration we generate 3 different samples of
~ 370K events each and the generalization performance using this dataset is averaged
over these 3 samples (Table 4.3).

(b) SynthArXiv: Here the user-user graph is the network over top 50 authors in terms
of the number of publications from ArXiv high-energy physics data from Stanford’s
SNAP? as described in the HTM paper [48]. The configuration for the generation of
the data are similar as for USPol-Synth dataset, with an exception of K = 10, and
|7’| = 500, and the topic-word distributions are sampled from Dirichlet(0.01), and for
each event e the document d, consists of Poisson(10) words sampled independently.
Using this configuration we generate 5 different samples of 100K events each, and

Lhttps://twitter.com/verified/lists/us-congress/members?lang=en
2snap.stanford.edu/data/cit-HepTh.html
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the reconstruction performance using this dataset is averaged over these 5 samples
(Tables 4.2, and 4.1).

4.4.3 Evaluation Tasks and Results

In this section we evaluate the models based on the (A) Reconstruction, and (B)
Generalization performances. We now describe each of the tasks formally along with
the respective evaluation metrics.

(A) Reconstruction Performance: Considering the abilities of the models we consider
three important tasks for the reconstruction, viz., topic identification, parent identifi-
cation, and network reconstruction. DNHP and HMHP are evaluated on the basis of
these tasks performed on the SynthArXiv dataset.

For the topic identification task, the evaluation measure used is the Mean Absolute
Error (MAE) which is defined as follows. For each event e € E, let n, and fj, be
the original and inferred topics respectively, associated with event e. Let m(n.) and
7(7.) be the distributions corresponding to the original topic 1, and inferred topic fj,
respectively. Then, the total absolute error (TAE) is defined as TAE = ) .cg |7m(1e) —
7(7je)|1 and the mean absolute error (MAE) is MAE = TAE/|E|, where |E]| is the total
number of events.

For the parent identification task, the evaluation metrics used are accuracy and re-
call. Accuracy is defined as the percentage of events for which the correct parent is
identified. And, given a ranked list of the predicted parents for each event, recall is
calculated by considering the top 1, 3, 5 and 7 predicted parents.

For the network reconstruction task, the performance of the models is evaluated with
respect to the reconstruction of the user-user influence matrix. However, notice that in
the case of DNHP the influence of an event on another event is modeled as the function
of the product of the user-user influence and the topic-topic interaction. And thus, in
the case of DNHP, one can only preserve the product of user-user influence and topic-
topic interaction but not user-user influence or topic-topic interaction independently.
So, to evaluate the performance of the models we first define modified user-user
influence as Wumu"d = Wi X 2k Tie and then evaluate the performance of the
models w.r.t. (Wlfr;fd. The evaluation metrics used are Mean Absolute Error (MAE)
and Mean Relative Error (MRE) which are defined as average of 3, , | W,mo? — Wmed
rwmod_erod . n . .

and ), , lquT‘uu respectively. Here, (M/u%"d is the modified ‘W, , value calculated
using the estimated ‘W, , (‘W,,) and estimated 7 i/ (ﬁ,k/). Also, note that for HMHP
model the W™d = W, , x K, where, K is the total number of topics.

(B) Generalization Performance: Here, we compare the performance of the models
based on the goodness of fit of each model on the heldout set (Test set), i.e. Log-
Likelihood (L £) of the heldout set. We perform this task on the semi-synthetic dataset
SynthUSPol and also on the real dataset USPol. For each event e in the Test set the
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observables are the time t,, the creator-id c., and the words/content w,. Whereas, the
parent z, and the topic 1, for each event are latent.

Let X and Y denote the set of events in the Train and Test sets respectively. As per
DNHP, the total log-likelihood of the test set VY, say L L(DNHP) is given as:

LL(DNHP) = log (1_[ P(t, Ce, we)) = Z (log P(te, Ce, We))

ecY ecly

- Z Z Z Z (eXp(_(ch’:Ce(]H’Ie”Ue) ’ (WCe',Ce(]HUe/J]e eXP(Ate)) X P(we|ne)

ecY e’€E N Ne
ce€N(c,)
ter <t

+ Z exp(He, Hp, T)He Hy, X P(wel7e) (4.8)
Me

Here, the summations over ¢’ € E, over 1./, and over 1), are for the marginalization over
the candidate set of parents, topic of parent event, and topic of event e respectively.

Similarly, for HMHP it is given as:

LL(HMHP) = log (ﬂ P(t,, ce,we)) = Z 1og(P(te, e, We))

ecY ecY

=X D DD (exp(-Wey ) We, . X eXP(ALe) X T, X P(welne)
eelY e’€Ec.eN(c,r) Ne! Me
ter <t
+ Z eXp(pceT)pceq/{ce,ne X P(we|n.) (4.9)
Me

As opposed to DNHP, in HMHP, 7, . is probability of transition from topic 1./ to
topic 1., and thus for a fixed .-, we have 3}, 7;,, x = 1. HMHP also has users topic
preference probability U, ,,, and for a fixed user c., 2 U, = 1.

In order to understand the complexity of computing this likelihood, let us first consider,
for simplicity, that only parent g, is latent for each event e € Y. In that case the
likelihood function requires marginalization only over the set of candidate parents for
each evente € Y.

LLY)= E E (exp(—(M/ce,,Ce‘Tne,,ne) X We, e Tnon, exp(Ate)) X P(we|ne)
ecY ¢e'€E
ce€N(c.r)
ter <te

+ exp(Hic, i, T)He, Hy, X P(welne) (4.10)

Here we are mentioning the likelihood for DNHP only. However, the likelihood in
the case of HMHP is of a similar form. Notice that, if a candidate parent z, = ¢’ for
an event e € Y is in the training set X, i.e. if ¢’ € X, then parent for ¢’ is inferred
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at the time of the training. Whereas if the candidate parent ¢’ is such that ¢’ ¢ X,
i.e. ¢ € Y, then the parent for ¢’ cannot be inferred. Which means, there is a need
to marginalize over candidate set of parents for ¢’ as well. Doing this recursively, to
get the exact L£L of event e € Y, in the worst case, requires summing over all the
possible paths to event e. Therefore, calculating .£.£ for all the events e € Y would
mean iterating over all the possible set of cascades, which requires O(n!) computation,
to the best of our knowledge, where, | Y| = n.

However, if there is a guarantee that for each event e € Y, each candidate parent
event e’ is in the train set X, then calculating the likelihood does not require summing
over all the possible cascades. For each event, the computation is of the order O(d),
where d is the maximum number of candidate parents for any event e € Y. Then
the total computation complexity is O(dn). Bringing in the additional latent variable,
i.e. n., the topic of event e, the computational complexity is of the order O(dnK),
where K is the maximum number of topics. Note that, as the candidate parent e’ is
in the Train set X, the topic 1, of the event is inferred at the time of training, thus,
summing over 1,/ is not required. Therefore, our goal here is to create a Test set such
that the parent event for each event is in the Train set and for the events in the Train
set either there are no latent variables, or are inferred.

The semi-synthetic dataset SynthUSPol is generated according to DNHP and thus we
know the original cascades formed by the events in the data. As the generation process
follows a level-wise generation of events (as described in Section 4.2.1), the last level
events are the leaf events of the cascades formed. We use this level information from
the SynthUSPol dataset to classify the events into Train and Test sets.

For the real dataset USPol, the true cascade structure is unknown. Therefore, it is
not possible to use the earlier straightforward approach of splitting the dataset into
Train and Test sets, such that the parents of the test events are in train (with already
inferred latent variables). Instead, we resort to some heuristic to split the dataset into
Train and Test such that the assumption is likely to hold. Note that as an event e
goes farther in time from its parent event e’, the probability of generation of event e
by the parent event e’ decreases exponentially, because of the exponential dependence
on time. Keeping this in mind, we split the dataset into Train and Test such that the
events in the Test set are not that far from their some potential parent events in the
Train set. To create the test set, events are processed sequentially. Each evente € E
is added to the Test set Y if and only if at most p;. fraction of its candidate parents
are already in the Test set Y. This ensures that 1 — p. fraction of its candidate
parents are still in the Train set X. Note that increasing (decreasing) pies: results in
increasing (decreasing) the test set size as well as decreasing (increasing) the train
set size. To study the effects of increasing training data size without reducing the test
size, we use an additional parameter O < pgqq < 1 to decide whether to include an
event in our experiments at all. Specifically, we first randomly include each event in
the dataset with probability p4qq, and then the Train and Test split is performed.

So now, given the above mentioned construction of the Train-Test split, the £ L(DNHP)
and LL(HMHP) is equivalent to that in Equations 4.8 and 4.9 respectively, without
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the summation over candidate parent’s topic 7.7, which is as follows.

LLONHP)

= Z Z Z (exp(=We, . T n)X Were.Tr n, €xp(Ate) X P(welne))
ecy e’eE Me
ce€N(c,r)
ter <te
+ Z exp(He, Hn, T)He, Hn, X P(Welne) (4.11)
Me

LLHMHP) = E E E (eXP(—(ch/,ce)(ch/,ce X exp(Ate)T . 0, X P(we|ne))
eelY ¢e’€E Ne
ce€N(c,r)
tor <te

+ Z eXp(pceT)IJcewce,r]e X P(we|ne) (4.12)
Me

Also, for both the models, the sum over a candidate set of parents for each event is
restricted to the events that are not farther in time and are in the Train set X.

4.4.4 Results
Reconstruction Performance:

This exercise is mostly to verify our Gibbs sampling based inference algorithm. And
the tasks here are addressed on the SynthArXiv dataset. Each result presented here
is an average over 5 samples of the generated dataset.

Parent Identification: Table 4.1 presents the results for this task. For both the models,
the recall improves significantly as we consider more candidates predicted parents.
The accuracy for the DNHP is ~ 60% better than that of the HMHP model. Even for
recall @ 3, DNHP performs at least ~ 50% better than that of the HMHP model.

Network Reconstruction: Table 4.1 highlights the results for this task. When all the
edges are considered the MAE and MRE for DNHP is ~ 59% and ~ 40% respectively
lesser than the HMHP model. However, on considering the edges with more than 100
transactions, the error in the case of DNHP improves further as compared to HMHP.

Topic Identification: The results for this task are displayed in Table 4.2. Both the
models perform almost equally. The reason for this could be that there are only 10
topics in the dataset, and because of the way the parameters are set, the topics are
likely near-orthogonal and hence the topic identification task gets easier.

In summary, DNHP outperforms the HMHP model with respect to the reconstruction
performance for the synthetic data.
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PARENT IDENTIFICATION

DNHP HMHP
AccuURAcY 0.45 0.28
RECALL@1 0.52 0.29
RECALL@3 0.73 0.46
RECALL@5 0.81 0.56
RECALL@7 0.85 0.63

NETWORK RECONSTRUCTION

DNHP HMHP
MAE 0.95 2.37
MAE (N, > 100) 1.13 3.17
MRE 0.39 0.69

MRE (N, > 100) o0.28 0.66

Table 4.1: Performance for Parent Identification and Network Reconstruction on
Semi-Synthetic Dataset

MAE DNHP HMHP

AVG(SD) 0.0074(0.013) 0.0074(0.011)

Table 4.2: Text modeling performance on Semi-Synthetic Dataset
Generalization Performance

The generalization performance for the models is evaluated on the basis of their
ability to estimate the heldout £ L. This task is addressed on both semi-synthetic
(SynthUSPol) and the real (USPol) dataset.

SynthUSPol Dataset: Table 4.3 presents the heldout ££ of time and content by the
models DNHP and HMHP, and L £ of time by the models DNHP and NHWKS for the
SynthUSPol dataset. The results are averaged over 3 independent samples each of
size ~ 370K (which is roughly the size of the real dataset USPol). The size of the
Train set upto 3" last level and upto 2 last level is ~ 170K and ~ 340K respectively.
The first row indicates the £.£ when 2™ last level events are used as a Test set and
all the events above that level are in Train set. Similarly, the second row highlights
the results when the events at the last level (truncated level) are used as Test set.
Observe that as more training is provided to both the models the £ £ estimation gets
better. Overall, DNHP outperforms NHWKS in explaining the timestamps by benefiting
from estimating topic-topic parameters given the text, and in turn, using those to
better estimate the user-user parameters. In the same way, by better estimating both
of these parameters using coupled updates, DNHP outperforms HMHP in explaining
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AVERAGE LoG-LIKELIHOOD OF TIME & CONTENT

TEsT ON DNHP HMHP
2" [ AsT LEVEL -58.66 -59.31
LAST LEVEL -57.6 -58.48

AVERAGE LoG-LIKELIHOOD OF TIME

TEsT ON DNHP NHWKS
2" [AsT LEVEL  -2.56 -2.76
LAsT LEVEL -2.32 -2.48

Table 4.3: Average £ L for Semi-Synthetic data

the time stamps and the textual content together.

USPol Dataset: Tables 4.4 and 4.5 presents the £ L of time and content for DNHP
and HMHP and £.L of time for DNHP and NHWKS on the USPol dataset with K = 25
and K = 100. The rows indicate the sizes of the Train and Test when the events
are selected in the dataset with probability pgqq set as 0.5, 0.7, and 1.0 (which
is the complete dataset). Then the Train-Test split is performed with p;.s; set as
0.3 and 0.5, which indicates the maximum fraction of candidate parents for each
event in the Test set.

Observe that as expected all the models, DNHP, HMHP, and NHWKS, get better at
estimating the £ £ with the increase in the size of the dataset across different values
of prest- Similarly, as with the synthetic data experiments, DNHP outperforms NHWKS in
fitting the timestamps and HMHP in fitting the time stamps and the textual content.
However, in the synthetic data experiments, the data had been generated using DNHP
and therefore the results were perhaps to be expected. Similar trends on real data
confirm that DNHP indeed models real cascades better than the two baseline models.

Equally significantly, the gap between DNHP and the two baselines HMIHP and NHWKS
is larger when dataset size (and as a result, the training size) is smaller. This agrees
with our understanding of parameter sharing leading to better generalization given
limited volumes of training data. This demonstrates that DNHP has already learned
the parameters efficiently with the smaller dataset size, using the flow of evidence
between the parameters in the update equations.

4.5 Related Work

Recently, there has been a spate of research work in inferring the information diffusion
network. The network reconstruction task can be based on just the event times ([37],
[381, [92], [36], [89], [59]), where the content of the events is not considered.
Dirichlet Hawkes Process (DHP) [28] is one of the models that use the content and
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P = 0.3

#Topics = 25

#Topics = 100

TrAIN(TEsT) DNHP HMHP DNHP HMHP
114K(70K) -80.51 -95.71 -81.91 -96.51
177K(100K) -78.09 -86.66 -79.22 -87.32
240K(130K) -76.57 -80.14 -77.34 -80.71
P =0.5

#Topics = 25 #Topics = 100
TrAIN(TEsT) DNHP HMHP DNHP HMHP
86K(98K) -81.39 -95.42 -83.12 -96.15
133K(144K) -79.05 -87.01 -70.49 -87.78
179K(190K) -77.44 -81.30 -78.57 -81.96

Table 4.4: Average Log-Likelihood for Time + Content for Real dataset USPol. (The

Train(Test) sizes mentioned are approximate.)

P = 0.3

#Toprics = 25

#Toprics = 100

TRAIN(TEsT) DNHP NHWKS DNHP NHWKS
114K(70K) -8.74 -24.46 -8.04 -24.46
177K (100K) -7.45 -16.32 -7.09 -16.32
240K(130K)  -6.56 -10.27 -6.37 -10.27
P = 0.5

#Toprics = 25 #Topics = 100
TRAIN(TEsT) DNHP NHWKS DNHP NHWKS
86K (98K) -8.97 -23.57 -8.08 -23.57
133K(144K) -7.74 -16.02 -7.23 -16.02
179K(190K)  -6.81 -10.90 -6.55 -10.90

Table 4.5: Average Log-Likelihood for Time for Real dataset USPol. (The Train(Test)

sizes mentioned are approximate)
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time information, but the tasks performed are not related to network inference or
cascade reconstruction. As similar to our model the DHP as well is a mixture model
and assigns a single topic to each event, but it does not have any notion of parent
event topical interactions. The recent models such as HTM [48], and HMHP [17] show
that using the content information can be profitable and can give better estimates for
the network inference tasks as well the cascade inference task. HMHP model is the
closest model to our model, which considers topical interactions as well. However, both
HMHP and HTM [48] consider the topics as marks that are generated independently
and are not generated along with the time.

In addition to the above mentioned models various generalizations of Dirichlet Process
such as Hierarchical Dirichlet process (HDP) [82] and variants of Chinese Restaurant
Process (CRP) such as Nested CRP (nCRP) [87], the Chinese Restaurant Franchise
Process (CRFP) [64] in combination with Hawkes processes have also been explored
in literature. Seonwoo et al. [82] proposed Hierarchical Dirichlet Gaussian Marked
Hawkes process (HD-GMHP) that reconstructs narratives and thread structure of
discussions from the text data. HD-GMHP uses Hawkes process to model the temporal
information of events, the textual information is modeled using Gaussian distribution
(as similar to that in HTM), and the trigerring relationships are modeled using mixture
of Gaussians.

In [87] the authors proposed a model named Nested Chinese Restaurant Process with
Hawkes Gaussian process (nCRP-HGP) which combines the advantages of hierarchical
nonparameteric Bayesian models (nCRP) with Hawkes processes to model the tempo-
ral and textual information of the events. nCRP-HGP incorporates the events in which
multiple senders and receivers are involved, and exploits the properties of the senders
and receivers for better modeling of the temporal information and textual content.

Mavraforakis et al. [64] developed Hierarchical Dirichlet Hawkes Processes (HDHP)
model by replacing Chinese Restaurant Process (CRP) with a Chinese Restaurant
Franchise Process (CRFP) which is capable of modeling streaming data from multiple
users. The model uncovers the various latent learning patterns from the series of
actions that users take on platforms like Stack Overflow and Wikipedia while gathering
some new information on some topic.

All these models ([82, 64, 87]) are powerful in terms of modeling the textual content,
but, either, as similar to DHP, does not take into account the notion of users or network
over users, or, as in HTM, forces parent-child text content to be topically close, which
does not help in capturing topical relationships between parent-child topics. Also,
these models do not consider the interaction between the the user-user and the topic-
topic networks, which play an important role in better modeling of events.

On the other hand, there have also been efforts in using Recurrent Neural Networks
(RNN) to model the intensity of point processes [29, 91, 65].
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4.6 Conclusions

In this chapter, we present a new Dual-Network Hawkes process that treats the users
and topics symmetrically in modeling the event generation. In the future, we wish
to incorporate more dimensions and study the effect of the inter-dimensional flow
of evidence in handling data sparsity. A concrete outcome will be to incorporate
structured prior over a latent topic graph or, in general, a structure over marks, and
improve the existing knowledge-base (e.g. DBpedia) from this cascade evidence.
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PART - 11
Parameterized Complexity of Information Diffusion
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Chapter 5

Parameterized Complexity of
Information Diffusion?

5.1 Introduction

In this chapter, we try to understand the diffusion of information in social networks
from a perspective of algorithms, and specifically, from the perspective of parameter-
ized algorithms. However, before going into the details of the parameterized algorithms
let us first give an overview of the algorithmic problem that we try to solve here. The
diffusion of information problem from the algorithmic perspective has been studied
before. For example, consider the problem of selecting the most influential nodes in
the network. Here, the aim is to find the initial seed nodes or “influential members” of
the network whose adoption of an idea or the product would trigger a large cascade
of adoption of idea or product and maximize the adoption in the network. In the past
decade or two, there has been a spate of work to understand the effects of diffusion
processes like “word-of-mouth” and “viral marketing” in the success of new products
or ideas or innovation [23, 51, 56, 55, 14, 10]. The two most prevalent models that
are considered to formalize the diffusion processes like “word-of-mouth” and “viral
marketing” are the Independent Cascade (IC) model and the Linear Threshold (LT)
model. In the IC model, given that a node u has adopted an idea (or activated), each
of its neighbor v adopts the same idea (or gets activated) with some probability py,.
And, in case of the LT model there is a weight associated w,, with each pair of neigh-
bors (u,v), such that Vv }}, w,, < 1. For each node v, there is threshold 6, € [0, 1]
associated with it. A node v adopts an idea or gets activated only if ), e y Wuw = Oy-
With these diffusion models, there has been significant research in providing faster
algorithms and algorithms with provable guarantees for the influence maximization
problem.

However, in this chapter, our goal is somewhat opposite. Note that it’s not always the
case that we want the information to spread in the network. Consider, for example,

LAll the results in this chapter are based on the publication [18] at ICALP-2017
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an epidemic or an infection, or some rumor or fake news floating in the network.
In all of these cases, the goal is to curb the spread. Thus, in contrast to all the
previous discussions or the generative models where we tried to understand the factors
responsible for the spread of information in networks, here we are interested in
designing algorithms that deal with the suppression of information. As similar to
the work on finding the “influential members”, in parallel there has been significant
research in the development of algorithms for the faster detection of an outbreak or
to minimize the population affected by the infection [56, 10]. In this work, we focus
on the Firefighting problem ([11, 6, 34, 32, 20, 45, 31]) where the aim is to design an
algorithm to place firefighters (inoculation) on the nodes in the network such that
particular set of nodes in the graph are saved from an infection or are protected from
fire. Let us describe the Firefighting problem formally.

The Firefighting problem formalizes the question of designing inoculation strategies
against a contagion that is spreading through a given network. The goal is to come up
with a strategy for placing firefighters on nodes in order to intercept the spread of fire.
More precisely, firefighting can be thought of like a turn-based game between two
players, traditionally the fire and the firefighter, played on a graph G with a source
vertex s. The game proceeds as follows:

* At time step O, fire breaks out at the vertex s. A vertex on fire is said to be
burned.

* At every odd time step i € {1,3,5,...}, when it is the turn of the firefighter,
a firefighter is placed at a vertex v that is not already on fire. Such a vertex is
permanently protected.

* At every even time step j € {2,4,6,...}, the fire spreads in the natural way:
every vertex adjacent to a vertex on fire is burned (unless it was protected).

The game stops when the fire cannot spread any more. A vertex is said to be saved if
there is a protected vertex on every path from s to v.

This said it is not hard to notice that the fire in the firefighting problem played on the
graph is analogous to an infection or an epidemic or a rumor in a network of users.
Understanding this parallel between the infection and the fire, hereafter, we would
use the terms contagion, infection, fire, epidemic, or rumor interchangeably. Also, we
would like to bring to the notice of the reader that, in case of the Firefighting problem
explained above, the model for the spread of the fire from a node to its neighbor is
simpler as compared to the IC and LT models. Le. if a node is burnt, the fire spreads
to all its neighbor deterministically, unless protected by a firefighter; which is not the
case for the IC and the LT models. Needless to say, the complexity of the algorithm
depends on the model of the spread of the fire or an infection chosen, in this work,
we focus on the simpler spreading model first.

However, irrespective of what the spreading model is, the natural algorithmic ques-
tion associated with the firefighting problem is to find a strategy that optimizes some
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desirable criteria, for instance, maximizing the number of saved vertices [11], min-
imizing the number of rounds, the number of firefighters per round [12], or the
number of burned vertices [31, 11], and so on. These questions are well-studied in
the literature, and while most variants are NP-hard, approximation and parameter-
ized algorithms have been proposed for various scenarios. An excellent survey by
Finbow and MacGillivray [32] on the Firefighting problem highlights various results
and questions related to the Firefighting problem.

As mentioned above, we are addressing the Firefighting problem from the perspective
of parameterized algorithms. We now give an overview of parameterized algorithms.

5.2 Overview of Parameterized Algorithms

Let us try to understand more about parameterized algorithms with the help of a very
well known VERTEX COVER problem. Recall that for an undirected graph G with the
vertex set V and the set of edges E, such that |V| = n and |E| = m, a vertex cover is a
subset S of vertices (say |S| = k) such that for every edge (u, v) in the graph, either u or
v is present in the set S. And the VERTEX COVER problem is to find the minimum size
vertex cover. Unfortunately, the VERTEX COVER problem is a classical NP-COMPLETE
problem. One of the algorithms to solve this problem is by trying all the possibilities
i.e. all the possible subsets, which is O(2"). Luckily, if there is a budget on the size of
the vertex cover i.e. |S| < k is not large, say k < 10, then the time complexity of the
naive algorithm would be O(n*), which is a polynomial in the input size. However,
there is a smarter algorithm that uses bounded search tree technique, which has a time
complexity of O(2%(n + m)). This algorithm works based on the following simple
observation, at least one of the two nodes of an edge must be selected. Thus, as long
as there is an edge, say (u, v), which is not covered, the algorithm proceeds as follows.
Move u to the set of accepted nodes, remove the edges covered by u and then run the
algorithm recursively to check if the remaining edges can be covered by at most k — 1
nodes. If this succeeds we have a solution. If it fails, move v to the set of accepted
nodes, remove the edges covered by v and then run the algorithm recursively to check
if the remaining edges can be covered by at most k — 1 nodes. Therefore, at each step,
the algorithm checks if there are uncovered edges, if so, it makes two recursive calls.
Note that, as the depth of this recursive tree can be at most k, there are at most 2€
recursive calls. Also, each call can be implemented in linear time O(n + m).

Observe that, if we consider k as a constant, both the algorithms are polynomial
time. But notice that, for a fixed value of k, bounded search tree based algorithm is
significantly better than the naive algorithm in terms of the running time complexity.
In the case of the naive algorithm, for a fixed value of k, the exponent of the polynomial
depends on the value of k, whereas, for a fixed value of k, the bounded search tree based
algorithm is a linear time algorithm. In O(2X(n + m)) algorithm, the running time is
exponential in k, but depends only linearly on the input size (n + m). Le. here the
combinatorial explosion is limited to the parameter k of the problem. And this is what
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the final objective of parameterized algorithms is — to design algorithms that have the
running time complexity of the form f(k) - n¢, for a constant c that is independent of
both n and k. Such algorithms, with running time f(k) - n¢, for a parameter k and a
constant c that is independent of both n and k are termed as fixed-parameter tractable
algorithms or FPT algorithms. And typically the goal here is to make both, the factor
f(k), and the constant ¢ as small as possible. In parameterized algorithms, the term
“parameterized” is attributed to the relevant secondary measurement k that captures
some aspect of the input instance. The aspect could be related to the size of the
solution, or it could be a number that describes how “structured” the input instance
is.

Note that, there can be multiple choices of parameters for the same problem. Whether
the problem has a FPT algorithm depends a lot on the choice of the parameter. In
Section 5.6 we will present a negative example where a particular choice of parameter
does not give a FPT algorithm. We would now move towards laying foundations
for parameterized complexity that helps us to understand the influence of different
parameters on the complexity of the problem. We start with the formal definition
of what a parameterized problem is and also explain the complexity classes for the
parameterized problems.

Definition 22 (Parameterized problem [19]): A parameterized problem is a language
L C X* X N, where X is a fixed, finite alphabet. For an instance (x,k) € X* x N, k is
called the parameter.

Let us go back to the VERTEX CovER problem and try to see it from the lens of
parameterized problem. An instance of the VERTEx COVER problem parameterized
by the size of the solution is a pair (G, k), where G is an undirected graph encoded
as a string over X, and k is an integer denoting the size of the vertex cover. The pair
(G, k) belongs to the VERTEX COVER parameterized language if and only if G correctly
encodes the undirected graph and G contains a vertex cover of size k. There is a
bit abuse of notation here, we are using G to denote both the graph as well as the
encoded string. The size of an instance of a parameterized problem (x, k) is given
as |x| + k. Here, the convention is that the parameter k is encoded in unary. Given
the formal definition of a parameterized problem, it’s now time to formally define the
fixed-parameter tractable problem.

Definition 23 (Fixed-Parameter Tractable (FPT) [19]): A parameterized problem
L C X* x N is called fixed-parameter tractable (FPT) if there exists an algorithm A
(called a fixed-parameter algorithm), a computable function f : N — N, and a constant
¢ such that, given (x, k) C X* X N, the algorithm A correctly decides whether (x,k) € L
in time bounded by f(k) - |(x, k)|°. The complexity class containing all fixed-parameter
tractable problems is called FPT. And the time complexity of the form f(k) - |(x, k)| is
also known as fpt-time.

Recall that, for the VERTEX COVER problem we also mentioned a naive algorithm with
the time complexity O(n). Such algorithms with the time complexity of the form
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f(k) - n8®) are termed as slice-wise polynomial (XP) algorithms. Let us define this
formally for completeness.

Definition 24 (Slice-wise Polynomial (XP) [19]): A parameterized problem L C
2" x N is called slice-wise polynomial (XP) if there exists an algorithm A and two
computable functions f,g : N — N, such that, given (x, k) C X* X N, the algorithm ‘A
correctly decides whether (x, k) € L in time bounded by f(k) - |(x, k)|8%). The complexity
class containing all slice-wise polynomial problems is called XP.

Also, we would like to add a point that the parameter k in the definitions of pa-
rameterized problem, FPT, and XP can be generalized to a vector of d parameters (d
non-negative integers) for some fixed constant d. And accordingly, the functions f
and g in the definitions of FPT and XP would depend on all these parameters.

Observe that, given a parameterized problem L, there are two different optimization
problems that a designer has to work on essentially while designing FPT algorithms.
As the complexity should be of the form f(k) - n, the designer can:

1. aim to design an algorithm where the constant c is as small as possible. Le. a
designer can try to optimize the polynomial factor in the running time; or

2. aim to design an algorithm such that the function f which is dependent on the
parameter k grows as slowly as possible. L.e. a designer can try to optimize the
parametric dependence of the running time.

Given this understanding of FPT algorithms, we highlight a couple of definitions that
show an analogy between parameterized complexity and the classical complexity
classes.

Definition 25 (para-K (Definition 3 [33])): Let K be a classical complexity class. Then,
the parameterized complexity class para-K is defined as the class of all parameterized
problems L C X* X N for which there exist a computable function f : N — X* and a
problem L’ € K such that for all instances (x, k) € 2* X N of L we have that (x, k) € L if
and only if (x, f(k)) € L” (consider that (x, f(k)) is encoded in X*).

Intuitively, para-K consists of all problems that are in K after a pre-computation that
involves only the parameter [33]. One of the common examples is the complexity
class para-NP. This class consists of all the parameterized problems that are solvable
by a non-deterministic algorithm in FPT-time [22].

Definition 26 (FPT-reduction): Let P C X* X N and P’ C X" X N be parameterized
problems. A para-PTIME-reduction, or FPT-reduction, from P to P’ is a mapping R :
2* X N — 2™ x N such that:

1. For dll (x,k) € 2* x N we have (x,k) € P < R(x, k) € P'.
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2. There exists a computable function g : N — N such that for all (x, k) € X* X N,
say with R(x, k) = (x’, k"), we have k" < g(k).

3. There exists a computable function f : N — N and a constant ¢ € N such that R
is computable in time f(k) - n°.

If there is an FPT-reduction from P to P’ then it is written P <gpr P’

Again, as similar in the classical complexity theory, a natural question to ask is what are
the complete problems for classes para-K? One of the guesses could be to apply some
suitable parameterization to the complete problems for K would be complete for para-
K. However, it turns out that, essentially there is no need for any parameterization
—i.e. the trivial parameterization of a complete problem for K is complete for para-
K. Therefore, one can say that the parameterized complexity classes para-K have
complete problems that are essentially unparameterized [33].

This argument has been formalized in the following proposition given by Flum and
Grohe [33].

Lemma 27. (Proposition 14 [33]) Let K be a robust complexity class, and let X be
complete for K under PTIME-reductions. Then X X {0} (trivial parameterization of X)
is complete for para-K under FPT-reductions.

An example of a para-NP-complete problem is SAT(constant) which is a parame-
terized version of the SAT problem, where the parameter is a fixed constant, i.e.
SAT(constant) = {(x,1) : x € SAT}. It turns out that, for any classical complexity
class K and the K-complete problem X, the problem X(constant) = {(x,1) : x € X}
is para-K complete [22].

Let us now turn to the definition of parameterized firefighting problem along with our
proposed FPT algorithm.

Saving a Critical Set. The game proceeds as described earlier: we are given a graph
G with a vertex s € V(G). To begin with, the fire breaks out at s and vertex s is
burning. At each step t > 1, first the firefighter protects one vertex not yet on fire -
this vertex remains permanently protected - and the fire then spreads from burning
vertices to all unprotected neighbors of these vertices. The process stops when the fire
cannot spread any more. In the definitions that follow, we formally define the notion
of a firefighting strategy.

Definition 28 (Firefighting Strategy): A k-step firefighting strategy is defined as a
function by : [k] — V(G). Such a strategy is said to be valid in G with respect to s if, for
all i € [k], when the fire breaks out in s and firefighters are placed according to }) for all
time steps up to 2(i — 1) — 1, the vertex b(i) is not burning at time step 2i — 1, and the
fire cannot spread anymore after time-step 2k. If G and s are clear from the context, we
simply say that V) is a valid strategy.
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Definition 29 (Saving C): For a vertex s and a subset C C V(G)\{s}, a k-step firefighting
strategy Y is said to save C if b is a valid strategy and Ui.‘zlb(i) is a {s}-C separator in
G, in other words, there is no path from s to any vertex in C if firefighters are placed
according to §.

We are now ready to define the parameterized problem that is the focus of this work.

SavING A CRITICAL SET (SACS) Parameter: k
Input: Anundirected n-vertex graph G, a vertex s, a subset C C V(G)\{s},

and an integer k.
Question: Is there a valid k-step strategy that saves C when a fire breaks out
at s?

As a starting point, we first show that the SACS problem is NP-complete even when
the critical set has only one vertex.

5.2.1 SACS is para-NP-complete

Theorem 30 ([Choudhari et al. [18]). ] SACS is NP-complete even when the critical set
has one vertex.

Proof. Let (G, k) be an instance of k-CLIQUE problem. We construct a graph G’ as
follows. For each edge (u,v) € E(G) create a node s,,. We denote this set of nodes
by E. For each node v € V(G) create a node v € G’ and denote this set of nodes by
V. Add two nodes s and t, where s is the node on which the fire starts and t € C
(CRITICAL SET), the node to be saved. Connect t to all the nodes in set E. Connect
s to each node v € V by a path of length k. Let us refer to these nodes, which are

on the paths from s to V, as V_;. Create (m — (]2() — 1) copies of set V. Denote these
—_— k —_—
copies as V1, Vo, ..., Vm_(k)_l. Let V,, = U?il(Z) 1Vi and V be denoted by V. Add an
k =

edge (v;j,v;j+1) forv; € V; and v; € Vjyq forall 0 < j < (m — (S) —1). For each edge

e = (u,v) in E(G) add an edge (u, s, ) and (v, sy ,) where u,v € Vm_(k)_l and sy, € E.
2

Now set k' = k + m — (S)

Lemma 31. At most k firefighters can be placed on the nodes in set (V_1 UVp) in G.

Proof. As per the construction of G’, each node v € Vj is connected to s with a path of
length k and each node u € V_; is at a distance of length less than k. Thus, there are at
most k time steps at which firefighters can be employed on the nodesinV_; UV,. O

Lemma 32. Protecting less than k nodes from the set H, = (V_1 UVy U V,,) in G’ is not
a successful strategy to save t.
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Figure 5-1: Saving a critical set is NP-complete

Proof. To save t, all the nodes in E (|E| = m) must either be protected or saved.
Suppose we protect y < k nodes in set Hi. Observe that, protecting y nodes in Hy

can save at most (g) nodes in E. Therefore, in order to save t we need to protect/save

remaining m — (}) nodes in E. Given the constraint on the budget as well as the

number of time instances we are left with, we can protect m — (S) + (k —y) more nodes
tosavet. Ifa = m — (;) + (k—y)and 8 = m — (}) then, the claimis  — a > 0.
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Therefore, it is not possible to save t if we protect y < k nodes in Hy, as this requires

m — (g) more nodes to be protected, which is not feasible. O

We claim that SAVING A CRITICAL SET with |C| = 1 on (G, k’,s,C = t) is a YEs-
instance if and only if k — CLIQUE is an YEs-instance in (G, k).

Suppose G has a k-CLIQUE denoted as K. Then the firefighting strategy is to protect
the vertices v; € Vj corresponding to the vertices v; € K. Protecting these k vertices
guarantees to save (’;) vertices in the set E. Also, from Lemma 31 it follows that
protecting these k vertices is valid with respect to time constraints. The remaining
m— (]2() in E can be protected at each allowed time step after placing the k firefighters
in V. This as well is valid with respect to the time constraints as the set of nodes E

are at a distance m — (S) from the set of nodes V.
Suppose that G” has a valid firefighting strategy S = {u1,u,...,u,, m_(k)} with k +
2

m— (5) firefighters. If a firefighter is placed on any node u € V_; or on any node
w € Vp, then it is equivalent to placing a firefighter on the node v; € Vy to which
the nodes u and w have a path. Therefore, in the firefighting strategy S if there is a
firefighter on node u € V_; then it is pushed to v; € V, such that u —v; is a path, and if
there is a firefighter on node w € V;;,, then it is pulled back to v; € Vj such that w — v;
is a path. Also, it follows from Lemma 32 that for a successful firefighting strategy, k
firefighters must be placed in Hx = (V_1 UV, UV,,). Therefore, these k nodes in V on
which the firefighters are placed (by pushing from u € V_; or pulling from w € V,;,),
must form a clique in G with the (;) edges corresponding to the nodes saved in the

set E. If these k nodes do not form a clique, then with the remaining m — (S) nodes it

won’t be possible to save/cover all the vertices in E. O

Thus, Theorem 30 and the Lemma 27 implies that SACS is para-NP-complete when
parameterized by the size of the critical set.

Before going to the FPT algorithm we highlight some terms and definitions in the next
section. These terms and definitions along with some lemmas lay foundations for the
final FPT algorithm for the problem.

5.3 Preliminaries

Most of our notation is standard. We use [k] to denote the set {1,2,...,k}, and we
use [k]p and [k]g, respectively, to denote the odd and even numbers in the set [k].

Definition 33 (Reachable Sets): Let G = (V, E) be an undirected graph, let X C V and
S C V\ X. We denote by Rg(X, S) the set of vertices of G reachable from X in G \ S and
by NRg(X, S) the set of vertices of G not reachable from X in G \ S. We drop the subscript
G if it is clear from the context.

107



RG (X7 S)
Reachable Set of X w.rt. S

S

Figure 5-2: Separator

We now turn to the notion of a X-Y separator and what it means for one separator to
cover another.

Definition 34 (Covering by Separators): Let G = (V, E) be an undirected graph and
let X,Y C V be two disjoint vertex sets. A subset S C V \ (X UY) is called an X - Y
separator in G if Rg(X,S) NY = 0, or in other words, there is no path from X to Y in the
graph G\ S. We denote by Ag(X,Y) the size of the smallest X —Y separatorin G. An X —Y
separator S is said to cover an X —Y separator S with respect to X if R(X, S1) D R(X, S).
If the set X is clear from the context, we just say that Sy covers S. An X —Y separator is
said to be inclusionwise minimal if none of its proper subsets is an X — Y separator.

If X = {x} is a singleton, then we abuse notation and refer to a x — Y separator rather
than a {x} — Y separator. A separator S; dominates S if it covers S and is not larger
than S in size:

Definition 35 (Dominating Separators [19]): Let G = (V, E) be an undirected graph
and let X,Y C V be two disjoint vertex sets. An X —Y separator S; is said to dominate
an X —Y separator S with respect to X if |S1| < |S| and S1 covers S with respect to X. If
the set X is clear from the context, we just say that S; dominates S.

We finally arrive at the notion of important separators, which are those that are not
dominated by any other separator.

Definition 36 (Important Separators [19]): Let G = (V, E) be an undirected graph,
X,Y C V be disjoint vertex sets and S C V \ (X UY) be an X —Y separator in G. We say
that S is an important X — Y separator if it is inclusionwise minimal and there does not
exist another X —Y separator Sy such that S; dominates S with respect to X.

It is well known that the important separator of smallest size is, in fact, unique:
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Lemma 37. [63] Let G = (V,E) be an undirected graph, X,Y C V be disjoint vertex
sets. There exists a unique important X-Y separator S* of size Ag(X,Y) and it can be
computed in polynomial time.

It is useful to know that the number of important separators is bounded as a FPT
function of the size of the important separators.

Lemma 38. [13] Let G = (V, E) be an undirected graph, X,Y C V be disjoint vertex sets
of G. For every k > O there are at most 4 important X — Y separators of size at most k.
Furthermore, there is an algorithm that runs in time O(4“k(m + n)) which enumerates
all such important X-Y separators, where n = |V| and m = |E|.

Definition 39 (Important Separators of Order i [61]): Let G = (V, E) be a graph and
let X,Y C 'V be disjoint vertex sets. We define an important X, Y-separator of order i, S',
to be the unique smallest important X — S""1-separator in G, where S° = Y.
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Definition 40 (Tight Separator Sequences [61]): Let G = (V, E) be a graph and let
X,Y CV. Let £ > 1 be such that there is no important X — Y separator of order £ + 1.
We define a tight X — Y separator sequence I to be a set I = {S'|1 < i < £}, where S is
an important X —Y separator of order i.

It turns out that tight separator sequences are unique, and can also be computed in
polynomial time [61].

Lemma 41 ([61]). Let G = (V, E) be a graph and let X,Y C V. A tight X —Y separator
sequence is unique and can be computed in polynomial time.

However, the definition and structural lemmas regarding tight separator sequences
used in this paper are closer to that from [61]. Since there are minor modifications in
the definition as compared to the one in [61], we give the requisite proofs for the sake
of completeness.

Figure 5-5: Tight Separator Sequence

Definition 42: Let X and Y be two subsets of V(G) and let k € N. A tight (X,Y)-
reachability sequence of order k is an ordered collection H = {Ho, H1, ..., Hq} of sets
in V(G) satisfying the following properties:

* X CH; CV(G)\N[Y]forany0 <i<gq;

* X:HoCH1CH2C"'CHq;

* forevery 0 < i < q, H; is reachable from X in G[H;| and every vertex in N(H;) can
reachY in G — H;
(implying that N(H;) is a minimal (X,Y)-separator in G);

* |[N(H;)| <k foreveryl <i<gq;
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* N(H)NN(Hj) =0foralll <i,j<qandi#j;

* Forany 0 < i < q— 1, there is no (X,Y)-separator S of size at most k where
S C Hi+q \N[Hl] OI‘SﬂN[Hq] =0QorSc Hj.

Welet S; = N(H;), for1 <i<q, Sq41 =Y, and S = {So,S1,...,5¢,Sq+1}- Wecall S
a tight (X,Y)-separator sequence of order k.

Lemma 43. ([Choudhari et al. [18]], see for example [62]) There is an algorithm
that, given an n-vertex m-edge graph G, subsets X,Y € V(G) and an integer k, runs in
time O(kmn?) and either correctly concludes that there is no (X,Y)-separator of size at
most k in G or returns the sets Hy, H1, Hy \ Hi, ..., Hq \ Hq—1 corresponding to a tight
(X,Y)-reachability sequence H = {Ho, H1, ..., Hq} of order k.

Proof. The algorithm begins by checking whether there is a X-Y separator of size at
most k. If there is no such separator, then it simply outputs the same. Otherwise, it
uses the algorithm of Lemma 38 to compute an arbitrary important X-Y separator S
of size at most k such that there is no X-Y separator of size at most k that covers S.

Although the algorithm of Lemma 38 requires time O(4k(m + n)) to enumerate
all important X-Y separators of size at most k, one important separator of the kind
described in the previous paragraph can in fact be computed in time O(kmn) by the
same algorithm.

If there is no X-S separator of size at most k, we stop and return the set R(X,S)
as the only set in a tight (X,Y)-reachability sequence. Otherwise, we recursively
compute a tight (X, S)-reachability sequence ¥ = {Py, ..., P, } of order k and define
Q = {Py,...,P,,R(X,S)} as a tight (X,Y)-reachability sequence of order k. It is
straightforward to see that all the properties required of a tight (X,Y)-reachability
sequence are satisfied. Finally, since the time required in each step of the recursion
is O(kmn) and the number of recursions is bounded by n, the number of vertices, the
claimed running time follows. O

5.4 The FPT Algorithm for SACS

5.4.1 Overview of the Algorithm

Here we first give a brief overview of the FPT algorithm for SAviNG A CRITICAL SET.
The starting point for our FPT algorithm is the fact that every solution to an instance
(G, s, C, k) of SACS is in fact a s-C separator of size at most k. Although the number of
such separators may be exponential in the size of the graph, it is a well-known fact that
the number of important separators is bounded by 4%n%(M) [13]. For several problems,
one is able to prove that there exists a solution that is, in fact, an important separator.
In such a situation, an FPT algorithm is immediate by guessing the important separator.
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Figure 5-6: Important Separators do not work

In the SACS problem, unfortunately, there are instances where none of the solutions
are important separators. However, this approach turns out to be feasible if we restrict
our attention to trees, leading to improved running times. This is described in greater
detail in Section 5.4.3. Further, in Section 5.5.2, we also show that we do not expect
SACS to admit a polynomial kernel under standard complexity-theoretic assumptions.
We establish this by a cross-composition from SACS itself, using the standard binary
tree approach, similar to [6]. We describe our FPT algorithm for general graphs in
Section 5.4.2. This is an elegant recursive procedure that operates over tight separator
sequences, exploiting the fact that a solution can never be contained entirely in the
region “between two consecutive separators”. Although the natural choice of measure
is the solution size, it turns out that the solution size by itself cannot be guaranteed
to drop in the recursive instances that we generate. Therefore, we need to define an
appropriate generalized instance and work with a more delicate measure.

5.4.2 The FPT Algorithm

Towards the FPT algorithm for SACS, we first define a generalized firefighting problem
as follows. In this problem, in addition to (G, s, C, k), we are also given the following:

* PWQ C [2k]p, a set of available time steps,
* Y C V(G), a subset of predetermined firefighter locations, and
* abijection y : Q — Y, a partial strategy for Q.
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The goal here is to find a valid partial k-step firefighting strategy over (P U Q) that is
consistent with y on Q and saves C when the fire breaks out at s. We assume that no
firefighters are placed during the time steps [2k]p \ (P U Q). For completeness, we
formally define the notion of a valid partial firefighting strategy over a set.

Definition 44 (Partial Firefighting Strategy): A partial k-step firefighting strategy on
X C [2k]o is defined as a function by : X — V(G). Such a strategy is said to be valid in G
with respect to s if, for all i € X, when the fire breaks out in s and firefighters are placed
according to b for all time steps upto [i — 1]p N X, the vertex b(i) is not burning at time
step i. If G and s are clear from the context, we simply say that ) is a valid strategy over
X.

What it means for a partial strategy to save C is also analogous to what it means for a
strategy to save C. The only difference here is that we save C despite not placing any
firefighters during the time steps j for j € [2k]p \ X.

Definition 45 (Saving C with a Partial Strategy): For a vertex s and a subset C C
V(G) \ {s}, a partial firefighting strategy b over X is said to save C if }) is a valid strategy
and Uiexh(i) is a s — C separator in G, in other words, there is no path involving only
burning vertices from s to any vertex in C if the fire starts at s and firefighters are placed
according to 1.

The intuition for considering this generalized problem is the following: when we
recurse, we break the instance G into two parts, say subgraphs G’ and H. An optimal
strategy for G employs some firefighters in H at some time steps X, and the remaining
firefighters in G’ at time steps [2k]p \ X. When we recurse, we would, therefore, like
to achieve two things:

 Capture the interactions between G’ and H when we recursively solve H, so that
a partial solution that we obtain from the recursion aligns with the larger graph,
and

* Constrain the solution for the instance H to only use time steps in X, “allowing”
firefighters to work in G’ for the remaining time steps.

The constrained time steps in our generalized problem cater to the second objective,
and the predetermined firefighter locations partially cater to the first. We now formally
define the generalized problem.

SAVING A CriTicaL SET WITH REsTRICTIONS (SACS-R) Parameter: k
Input: An undirected n-vertex graph G, vertices s and g, a subset C C

V(G) \ {s}, asubset P W Q C [2k]p, Y C V(G) (such that |Y|
|Q|, 2k — 1 € Q and g € Y), a bijeciton y : Q — Y such that
y(2k — 1) = g, and an integer k.

Question: Is there a valid partial k-step strategy over P U Q that is consistent
with y on Q and that saves C when a fire breaks out at s?
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We use p and q to denote |P| and |Q]|, respectively. Note that we can solve an SACS
instance (G, s, C, k) by adding an isolated vertex g and solving the SACS-R instance
(G,s,C,2k+2,g,P,Q,Y,y), where P = [2k]p, Q = {2k+1},Y = {g} and y(2k+1) = g.

Therefore, it suffices to describe an algorithm that solves SACS-R.
The role of the vertex g is mostly technical and will be clear in due course.

We now describe our algorithm for solving an instance I := (G, s, C,k,g,P,Q,Y,y) of
SACS-R. Throughout this discussion, for the convenience of analysis of YEs instances,
let h be an arbitrary but fixed valid partial firefighting strategy in G over P U Q,
consistent with y on Q, that saves C. Our algorithm is recursive and works with pieces
of the graph based on a tight s — C-separator sequence of separators of size at most
|P| in G \ Y. We describe the algorithm in three parts: the pre-processing phase,
the generation of the recursive instances, and the merging of the recursively obtained
solutions.

Phase o — Preprocessing. Observe that we have the following easy base cases:

* If G\Y has no s — C separators of size at most p, then the algorithm returns No.

* If p = 0, then we have a Yis-instance if, and only if, s is separated from C in
G \Y and }) := y is a valid partial firefighting strategy over Q. In this case, the
algorithm outputs YEs or No as appropriate.

* If p > 0 and s is already separated from C in G \ Y, then we return YEs, since any
arbitrary partial strategy over P U Q that is consistent with y on Q is a witness
solution.

If we have a non-trivial instance, then our algorithm proceeds as follows. To begin
with, we compute a tight s — C separator sequence of order p in G \ Y. Recalling
the notation of Definition 42 , we use Sy, ...,Sq41 to denote the separators in this
sequence, with Sy being the set {s} and Sq;1 = C. We also use Wy, W1, ..., Wy, Wy4q
to denote the reachability regions between consecutive separators. More precisely, if
H is the tight s — C reachability sequence associated with S, then we have:

W; = Hi\N[Hi_l] for1 <i< q,

while W1 is defined as G \ (N[Hq] U C). We will also frequently employ the following
notation:

q q+1
S = USi and W = UWi. (5.2)
i=1 i=1

This is a slight abuse of notation since S is also used to denote the sequence S, . .., Sg+1,
but the meaning of S will typically be clear from the context.
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We first observe that if ¢ > k, the separator Sy can be used to define a valid partial
firefighting strategy. The intuition for this is the following: since every vertex in S,
is at a distance of at least k from s, we may place firefighters on vertices in S, in any
order during the available time steps. Since |S;| < p and S is a s — C separator, this
is a valid solution. Thus, we have shown the following:

Lemma 46. If G admits a tight s — C separator sequence of order q in G\ Y where q > k,
then I is a Yes-instance.

Therefore, we return Yes if ¢ > k and assume that ¢ < k whenever the algorithm
proceeds to the next phase.
This concludes the pre-processing stage.

Phase 1 — Recursion. Our first step here is to guess a partition of the set of available
time steps, P, into 2q + 1 parts, denoted by Ao, ..., Aq, Ag+1 and By,...,Bgi1. The
partition of the time steps represents how a solution might distribute the timings of
its firefighting strategy among the sets in S and ‘W. The set A; denotes our guess of
Uyes;b ™ (v) and B; denotes our guess of Uyew,h™'(v). Note that the number of such
partitions is (2q + 1)P < (2k + 1)X. We define go(k) := (2k + 1)X. We also use 77(P)
to denote the partition Ay, ..., A and 72(P) to denote By, ..., Bg1.

{5t {11 {13} {317} {9,11,15} {} ({19,23} (7} {21}

Figure 5-7: Guess the partition

We say that the partition (77(P), 72(P)) is non-trivial if none of the B;’s are such
that B; = P. Our algorithm only considers non-trivial partitions — the reason this is
sufficient follows from the way tight separator sequences are designed, and this will
be made more explicit in Lemma 48 in due course.

Next, we would like to guess the behavior of a partial strategy over P restricted to
S. Informally, we do this by associating a signature with the strategy 1), which is is
a labeling of the vertex set with labels corresponding to the status of a vertex in the
firefighting game when it is played out according to [). Every vertex is labeled as either
a vertex that had a firefighter placed on it, a burned vertex, or a saved vertex. The
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labels also carry information about the earliest times at which the vertices attained
these statuses. More formally, we have the following definition.

1D

Si-1 Wi Si . Burnt

G; = G[Si—1 UW,; US| O Saved
O Protected

Figure 5-8: Possible Labeling

Definition 47: Let [) be a valid k-step firefighting strategy (or a partial strategy over X).
The signature of 1) is defined as a labeling £y of the vertex set with labels from the set:

L= ({f} xX) U ({b} x[2k]g) U {p},

where:

(f,0) ifbe) =v,
Ly(v) = (b, t) ift is the earliest time step at which v burns,
p if v is not reachable from s in G \ ({b(Q) | i € [2k]o})

We use array-style notation to refer to the components of £(v), for instance, if L(v) =
(b,t), then L(v)[0] = b and L(v)[1] = t. The algorithm begins by guessing the
restriction of £ on S, that is, it loops over all possible labellings:

T:8 = ({f} xP) U ({b} x [2k]g) U {p}.

The labeling T is called legitimate if, for any u # v, whenever T(u)[0] = T(v)[0] =T,
we have T(u)[1] # T(v)[1]. We say that a labeling T over S is compatible with
T1(P) = (Ao, ..., Ay) if we have:

e forall0 <i<r,ifves; and h(v)[0] = {, then h(v)[1] € A;.

e forall0 <i<r,ift € A;, there exists a vertex v € S; such that h~1(f,t) = v.
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The algorithm considers only legitimate labelings compatible with the current choice
of 71(P). By Lemma 46, we know that any tight s—C separator sequence considered by
the algorithm at this stage has at most k separators of size at most p each. Therefore,
we have that the number of labelings considered by the algorithm is bounded by

g1(k) = (p + k + 1)*P) < (3k)0K") < (O,

We are now ready to split the graph into q + 1 recursive instances. For 1 <i < g+ 1,
let us define G; = G[S;_; UW; US; UY]. Also, let T; := T |y(g,)ns. Notice that when
using G;’s in recursion, we need to ensure that the independently obtained solutions
are compatible with each other on the non-overlapping regions, and consistent on
the common parts. We force consistency by carrying forward the information in the
signature of f) using appropriate gadgets, and the compatibility among the W;’s is a
result of the partitioning of the time steps.

Fix a partition of the available time steps P into 71(P) and 7>(P), a compatible labeling
Tand 1 <i < q+ 1. We will now define the SACS-R instance J (i, 71(P), 72(P), I;).
Recall that 7 = (G, s,C, k,g,P,Q,Y,y). To begin with, we have the following:

e LetX; = A;_1 UA; and let P; = B;.
e LetQ; :=X; UQ and Y; :=Y U X;. We define y; as follows:

(t) _ y(t) if t e Q)
yilt) = v if t € X; and T;(v) = (f, t)

Note that y; is well-defined because the labeling was legitimate and compatible with
71(P). We define H; to be the graph y(G;, ¥;), which is described below.
* To begin with, V(H;) = V(G;) U {s*, t*}

* Let v € V(G;) be such that T;(v)[0] = b. Use ¢ to denote T;(v)[1]/2. Now, we
do the following:

— Add k + 1 internally vertex disjoint paths from s* to v of length € + 1, in
other words, these paths have ¢ — 1 internal vertices.

— Add k + 1 internally vertex disjoint paths from v to g of length k — £ — 1.
* Letv € V(G;) be such that T;(v) = p. Add an edge from v to t*.

* We also make k + 1 copies of the vertices t* and all vertices that are labeled
either burned or saved. This ensures that no firefighters are placed on these
vertices.

For1 < i < g+1, the instance 7 (i, 71(P), T2(P), I;) isnow defined as (y(G;, I;), s*, C =
{t*}, k, g, Pi,Qi, Yi, yi).
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Gi = G[Si_l U Wz U Sz]

Figure 5-9: Solving the border problem

Phase 2 — Merging. Our final output is quite straightforward to describe once we
have the h[T;, i]’s. Consider a fixed partition of the available time steps P into 77(P)
and 75(P), and a labeling T of S compatible with 77(P). If all of the (q + 1) instances
I{(i,T1(P),T2(P),T;), 1 < i < q+ 1 return YEs, then we also return YEs, and we
return No otherwise. Indeed, in the former case, let h[i, 71(P), T2(P), ] denote a
valid partial firefighting strategy for the instance 7 (i, 771(P), 72(P), T;). We will show
that h*, described as follows, is a valid partial firefighting strategy that saves C.

* For the time steps in Q, we employ firefighters according to y.

* For the time steps in 71(P), we employ firefighters according to T. This is a
well-defined strategy since T is a compatible labeling.

* For all remaining time steps, i.e, those in 75(P) = {By, ..., Bgs1}, we follow the
strategy given by b[i, 771(P), T2(P), T].

It is easily checked that the strategy described above agrees with h[i, 771(P), T2(P), T]
for all i. Also, the strategy is well-defined, since 77(P) and 7(P) form a partition of

the available time steps. Next, we will demonstrate that h* is indeed a valid strategy
that saves C, and also analyze the running time of the algorithm.

Correctness of the Algorithm
We first show that the quantity p always decreases when we recurse.
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Figure 5-10: Solving Recursively

Figure 5-11: Merging Solutions

Lemma 48 (Choudharietal. [18]). Let I’ := I (i, 71(P), 72(P), T;) = (x(G;, T;),s*,C =
{t*}, k, g, P;,Qi,Y;:,yi) be an arbitrary but fixed instance constructed by Solve-SACS-
R(I). Then, |P;| < |P|.

Proof. The claim follows from the fact that P; = B;, and (77(P), 72(P)) is a non-trivial
partition of P. O

Lemma 49 (Choudhari et al. [18]). If I is a YEs instance of SACS-R, then our algorithm
returns YEs.

Proof. The statement follows by induction on p, which allows us to assume the cor-
rectness of the output of the recursive calls. The correctness of the base cases is
easily checked. If 7 is a YEs instance admits a solution ), then it induces a parti-
tion 77(P), T2(P) of P. We argue that this is always a non-trivial partition and is
therefore considered by the algorithm. Indeed, suppose not. This would imply that
b places all its firefighters in W; for some 1 < i < q + 1. However, this implies that
D := U;ep,b(t) € W;is as—C separator in G \ Y that is entirely contained in W;, which
contradicts the definition of a tight s — C separator sequence.
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Algorithm 7: Solve-SACS-R(J)
Input: An instance (G, s,C,k,g,P,Q,Y,y), p := |P|
Result: YEs if 7 is a YEs-instance of SACS-R, and No otherwise.
1 if p = 0 and s and C are in different components of G \ Y then return YEs;
else return No;
if p > 0 and s and C are in different components of G \ Y then return Yzs;
if there is no s — C separator of size at most p then return No;
Compute a tight s — C separator sequence S of order p.
if the number of separators in S is greater than k then return YEs;
else
for a non-trivial partition 71(P), 72(P) of P into 2q + 1 parts do
L for a labeling T compatible with 771(P) do

t if /\?:11 (Solve-SACS-R(I (i, T1(P), To(P), I;))) then return Yzs;

~N A A~ W N

o ®

1 return No

Now, define the labeling T by projecting the signature of [) on S. Clearly, this la-
beling is compatible with 77(P) (by definition). We claim that all the instances
I{i,T1(P), T>(P),T;) are YEs instances. Indeed, it is easy to check that the projec-
tion of h on the subgraph G; is a valid solution for the instance 1 (i, 771(P), T2(P), T;).
It follows that the algorithm returns YEs since these (g + 1) instances return YEs by
the induction hypothesis. O

For the remainder of our discussion on correctness, our goal will be to prove the
following reverse claim.

Lemma 50 (Choudhari et al. [18]). If the output of the algorithm is YEs, then I is a
YEs instance of SACS-R.

This lemma is shown by establishing that h* is indeed a valid solution for SACS. We
arrive at this conclusion by a sequence of simple claims. We fix the accepting path
in the algorithm, that is, an appropriate partition of P and the labeling T on § that
triggered YEs output. Our first claim says that the recursive instances respect the
behavior dictated by the labeling that they were based on.

Lemma 51 (Choudhari et al. [18]). Let1 <i < q+1landv € SNH; If T;(v) = (b,t),
then in any partial strategy employed on the instance I (i, 71(P), T2(P), ;) that saves
the critical set, the vertex v burns exactly at time step t.

Proof. Let Iy be an arbitrary but fixed valid partial strategy for 7 (i, 71(P), 72(P), T;)
that saves the critical set. Assume that v burns with respect to ). Let t’ be the earliest
time step at which v burns with respect to /. The graph x(G;, ;) contains (k + 1)
vertex-disjoint paths from the source to v of length t/2, which ensures that t' < t.
However, if t’ < t, then the vertex g catches fire at time step 2k — 1 because of the
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(k + 1) vertex-disjoint paths of length k — t/2 — 1 that are present from v to g. This
implies that t* cannot be saved if v burns earlier than t. The other case is that v does
not burn with respect to Iy’. The only way for this to happen is if a firefighter is placed
on v, however, since the instance has k + 1 copies of v, we have that at least one copy
of v burns, and the claim follows. O

Our next claim is that vertices that are labeled saved never burn with respect to h*.

Lemma 52 (Choudhari et al. [18]). For any v € S, if T(v) = p, then v does not burn
with respect to h*.

Proof. We prove this by contradiction. Let P be a path from s to v where all vertices on
P are burning. Let v’ be the first vertex on this path which is such that T(v") = p, and
let u be the last vertex on this path which is before v” and that intersects a separator.
Observe that u is well-defined unless v’ € S;, which is a special case that we will deal
with separately. Note that u must be a vertex that is labeled as burned (by the choice
of v"). Therefore, the path from u to v is present in a recursive instance, where we
know that v’ is adjacent to a critical vertex, which contradicts the fact that we defined
h* based on valid strategies that save critical sets in the recursive instances. If v” € S;
and u is not well-defined, then observe that there is a direct path from s to v’ in the
first recursive instance, and the same argument applies. O

We finally show, over the next two claims, that the function h* is a valid strategy that
saves the critical set.

Lemma 53 (Choudhari et al. [18]). The function b* is a valid partial strategy over
(P U Q) for the instance 1.

Proof. We prove this by contradiction, and we also assume that Lemma 50 holds for
all recursive instances (by induction on p). If h* is not a valid strategy, then there
exists some 1 < i < g + 1 for which there is a vertex v € W; and a time step t € B;
such that h*(t) = v and v is burning at time step t. Consider the path P from s to v.
Let u be the last vertex on the path P that intersects S;_1; U S;. Observe that u is a
vertex that is either labeled by (b, t) or p. This leads to the following two scenarios:

* In the first case, the part of the path from u to v is present in the instance
I{i,71(P), T>(P), I;), because of the agreement of h* and b[i, 771(P), T2(P), T]
and Lemma 51. Therefore, b[i, 71(P), T2(P), T] was not a valid firefighting
strategy.

* The second situation implies that a vertex labeled protected is burning in 7
when h* is employed, which contradicts Lemma 52.

121



Lemma 54 (Choudhari et al. [18]). The partial strategy h* saves the set C in the instance
7.

Proof. (Sketch.) The proof of this is similar to the proof of Lemma 53. Any burning
path P from s to any vertex in C must intersect S;. We let v be the last vertex from S,
on P, and observe that v must have a (b, t). Therefore, the path from v to the vertex
in C exists in 7(q + 1,71(P), 72(P),I;), and also burns in the same fashion, since
b* agrees with h[q + 1, 71(P), To(P), T]. Again, this contradicts the accuracy of the
algorithm on the recursive instance. O

The proof of Lemma 50 now follows from Lemmas 53 and 51.

Running Time Analysis

Subsequently, it branches into at most r < f(k).(q + 1) instances This is given by
2o(k)g1(k), recall that this is bounded by KOG,

We show that our algorithm runs in time f (k)pZO(nzm), where f(k) = k9K Indeed,
observe that the running time of the algorithm is governed by the following recurrence:

q+1

T(n,m,k,p) < O(*mp) + (p+k+ 1P } T, my,k, py)
i=1

where the term (p + k + 1)*P denotes an upper bound on the product of the total
number of non-trivial partitions of P into (2q + 1) parts and the total number of
legitimate labelings of S compatible with 77 (P).

The first term accounts for checking the base cases and the running time of computing
a tight separator sequence of order p (see Lemma 43). Since p is always at most k,
we rewrite the recurrence as

q+1

T(n,m,k, p) < O(n®mp) + f(k)P D T(ni, mi, k, po),
i=1

where f(k) = k°®) . Furthermore, observe that Z?:ll n; < n + pk. The first inequality
follows from the fact that every vertex in S appears in at most two recursive instances.
The first occurrence is counted in n, while all the second occurrences combined amount
to at most pk.

Finally, recall that p; < p by Lemma 48 and p < k by definition (since P C [2k]p).
Therefore, the depth of the recursion is bounded by p, and the time spent at each level
of recursion is proportional to k°*P’n?m. This implies the claimed running time.
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Based on the analysis above and Lemmas 49 and 50, we have thus demonstrated the
main result of this section.

Theorem 55 (Choudhari et al. [18]). SACS is FPT and has an algorithm with running
time f(k)O(nm?), where f(k) = KO,

5.4.3 A Faster Algorithm For Trees

In this section, we consider the setting when the input graph G is a tree. WLOG, we
consider the vertex s to be the root of the tree. We first state an easy claim that shows
that WLOG, we can consider the critical set to be the leaves. The proof of the following
lemma follows from the fact that the firefighting solution has to be a s — C separator.

Lemma 56 (Choudhari et al. [18]). When the input graph G is a tree, if there exists a
solution to SACS, there exists a solution such that all firefighter locations are on nodes
that are on some path from s to C.

Given the above claim, our algorithm to construct a firefighting solution is the
following— exhaustively search all the important s — C separators that are of size
k. For each vertex v in a separator Y, we place firefighters on Y in the increasing order
of distance from s and check whether this is a valid solution.

The following lemma claims that if there exists a firefighting solution, the above
algorithm will return one.

Lemma 57 (Choudhari et al. [18]). Solving the SACS problem for input graphs that are
trees takes time O*(4%).

Proof. Using Lemma 56, it is enough to consider the subtree T that contains nodes
only on s — C paths. The critical set C is then a subset of the leaves of T. Suppose
Y C V(T) contains the locations for a solution to the firefighter problem. WLOG, Y is
a minimal s — C separator. Consider I which is an important separator that dominates
Y. Clearly, |I| < |Y| < k, and I is also a minimal separator.

For each x € I, define Sy to be the set of y € Y such that y lies on the (unique) s — x
path. Note that each y € Y must belong to some s — C path, and all s — C paths have
some node x € I. Furthermore, R(s,Y) C R(s, I), which means that each y € Y lies
on some s — I path. It follows that Y C U,¢;Sy. Finally, by the minimality of Y, each
Sy satisfies |Sy| < 1, since otherwise, we could remove one of the nodes of S, from Y.
Hence,

Y] < [ Ueer Sl < ) IS:l < 11l < Y]
x€l
Thus | Uyer Sx| = Xyes ISx|, and it follows that S, NS, = 0 for all x # u. From
Yver ISkl = |I] and |Sy| < 1 for each x it also follows that for each x, |Sy| = 1.
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We then design a firefighting solution using I in the following manner. For each node,
x € I, the firefighter in location x is placed whenever the original solution (using
Y) placed a firefighter on the unique node in S,. Since the node in S, is closer to
s than x, the location x is still available at this step. Hence this is a valid strategy.
Note that if there is any valid placement ordering for I, then the placement ordering
according to increasing distance from s is also valid. The claim then follows by noting
that enumerating all the important separators of size at most k takes time O*(4%). O

5.5 Kernelization

Recall the instance of the VERTEX COVER problem (G, k) that was used as an example
to explain FPT algorithms. We will now show that with the help of some simple
observations it is possible to reduce the size of the instance without affecting the final
solution of the problem. So here is the first reduction rule:

Reduction Rule 1: If the graph G contains a vertex v such that, the degree of v is 0,

then remove that vertex from the graph and consider the new instance of the problem,
which is (G \ {v}, k).

Notice that, removing the degree O vertices from the graph does not affect the final
vertex cover solution. The next reduction rule is based on the observation that if the
problem instance (G, k) contains a vertex v of degree greater k, then v must be the
part of the vertex cover solution.

Reduction Rule 2: If the graph G contains a vertex v of degree at least k + 1, then
remove v from the graph along with its incident edges and reduce the parameter k to
k — 1. The updated instance of the problem is (G \ {v}, k — 1).

Observe that, if the vertex v with degree at least k + 1 is not a part of the vertex cover
solution, then all the neighbors of v must be in the solution. This would make the
solution size to be at least k + 1 which is not desirable given the parameter k.

The reduction rules 1 and 2 lead to the following lemma:

Lemma 58 ([19]). If (G, k) is a Yes-instance and none of the reduction rules 1 and 2
are applicable to G, then the number of vertices |V(G)| in G is at most k? + k, and the
number of edges |E(G)| in G is at most k2.

Therefore, now we can conclude that, if (G, k) with k > 0 is an input instance such
that reduction rules 1 and 2 are not applicable, and if G has more than k? + k vertices
or more than k? edges, then the instance (G, k) is a No-instance of the VERTEX COVER
problem.

In the above exercise of applying reduction rules to the instance of the problem, notice
that the aim was to reduce the size of the instance of the problem by doing some
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preprocessing. Also, notice that all the reduction rules can be applied in polynomial-
time. And this is what the aim behind kernelization is, i.e. to reduce the problem
instance efficiently. Mostly, while dealing with NP-hard problems preprocessing(data
reduction or kernelization) is the first step towards solving the problem. In the
preprocessing subroutine, the aim is to solve the “easy parts” of the problem instance
efficiently and then work on the shrunken or reduced part, which is the main core
of the problem. The advantage of the shrunken part is that it being smaller one can
think of running slower algorithms as well.

In the language of parameterized complexity, kernelization formalizes the definition
of useful preprocessing. One can think that in kernelization the demand is shrunk the
large instances with a smaller parameter, while the instances which are smaller as
compared to the parameter should not be preprocessed further.

Let us now move on to the formal definition for kernelization or what does it mean to
have a kernel for a problem instance.

Definition 59 (Data reduction rule (Section 2.1 [19])): A data reduction rule, or
simply, reduction rule, for a parameterized problem Q is a function @ : X* XN — X* XN
that maps an instance (I, k) of Q to an equivalent instance (I’, k”) of Q such that @ is
computable in time polynomial in |I| and k.

Two instances of Q are said to be equivalent if (I, k) € Q if and only if (I, k) € Q;
this property of the reduction rule @, that it translates an instance to an equivalent
one, is sometimes referred to as the safeness or soundness of the reduction rule [19].

Definition 60 (Kernelization, kernel (Definition 2.1 [19])): A kernelization algo-
rithm, or simply a kernel, for a parameterized problem Q is an algorithm A that, given
an instance (I, k) of Q, works in polynomial time and returns an equivalent instance
(I', k") of Q. Moreover, we require that size#(k) < g(k) for some computable function
g:N—>N.

Here, size #(k) is the output size of the preprocessing algorithm A, which is a function
sizeg(k) : N — N U {oo} defined as:

sizeq(k) = sup{|I'| + k' : (I',k') = A(I,k),I € *}

This says that the Kernelization algorithms are nothing but preprocessing algorithms
that create an instance with the size that is finite and bounded by a computable
function of the parameter. Also, observe that, if there is a kernelization algorithm for
a problem for which there is an algorithm that decides whether (I, k) is a YEs-instance,
then the problem is FPT because the size of the reduced instance of I is just a function
of k which is independent of the input size n. However, there is a surprising result
that says that the converse is also true.

Lemma 61 (Lemma 2.2 [19]). If a parameterized problem Q is FPT then it admits a
kernelization algorithm.
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Lemma 61 implies that a decidable problem admits a kernel if and only if it is fixed-
parameter tractable. Therefore, kernelization can be thought of as another way of
defining fixed-parameter tractability. Also, observe that, the VERTEX COVER problem
presented as an example at the start of this Section 5.5 is an evidence of Lemma 61.
That is, the (G, k) instance of the VERTEX COVER problem is FPT and admits a kernel
with O(k?) vertices and O(k?) edges.

5.5.1 Compositionality

For algorithmic problems, usually, we are more interested in the running time of
the algorithm. However, in case of kernelization the focus is on the size of the output
(A(I, k)). Needless to say, the running time of the kernelization algorithm is important,
but, in theory, it is required to be polynomial. Kernelization algorithms that give good
guarantees on the output size (say, polynomial) are considered to be interesting and
the designers aim for that mostly. Thus, a natural question to ask is, under what
assumptions and what conditions can we rule out the possibility of the existence of a
polynomial kernel for a particular FPT problem? And one of the ways to answer this
question is via the framework of compositionality. This framework made it possible
to systematically classify the problems depending on whether they admit polynomial
kernels or not [19]. Very briefly the framework can be described as follows:

* Consider multiple instances of a problem L (say, x1,X2,...,X:), where, L is a
unparameterized version of some parameterized problem Q

* Compute a single instance (x+, kx) of Q in time polynomial in };_; |x;]

* Try to show that (x*, k*) € Q if and only if x; € L for some 1 <i <t
We now present the formal definition of cross-composition and use it to show that the
Firefighting problem — SAVING A CRITICAL SET does not admit polynomial kernel when

restricted to trees. Before that, we first define polynomial equivalence relations, which
would be used in the cross-composition framework.

Definition 62 (Polynomial equivalence relation [7]): An equivalence relation R
on X*, where X is a finite alphabet, is called a polynomial equivalence relation if
the following holds:

1. equivalence of any x,y € X* can be checked in time polynomial in |x| + |y|, there
is an algorithm that given two strings x,y € X* decides whether x and y belong to
the same equivalence class in (|x| + |y|)°?) time, and

2. any finite set S C £* has at most (maxyes |x|)°Y) equivalence classes.

Definition 63 (Cross-composition [7]): Let L C X* and let Q C X* X N be a pa-
rameterized problem. We say that L cross-composes into Q if there is a polynomial
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equivalence relation ‘R and an algorithm which, given t strings x1, X2, . . . , X; belonging
to the same equivalence class of R, computes an instance (x*,k*) € X* X N in time
polynomial in Yi_; |xi| such that:

1. (x*,k*)eQ & x; € Lforsomel <i <t and

2. k™ is bounded by a polynomial in (max;<;<¢ |x;| + logt).

The following theorem allows us to rule out the existence of a polynomial kernel for
a parameterized problem.

Theorem 64 ([7]). If an NP-hard problem L C X* has a cross-composition into the
parameterized problem Q and Q has a polynomial kernel then NP C coNP/poly.

5.5.2 No Polynomial Kernel, Even on Trees

Given that there is an FPT algorithm for SACS when restricted to trees, here we show
that SACS on trees has no polynomial kernel using the framework of compositional-
ity. The proof technique used here is on the similar lines of the proof showing no
polynomial kernel for SAVING ALL BUT k-VERTICES by Bazgan et. al.[6].

Theorem 65 (Choudhari et al. [18]). SACS when restricted to trees does not admit
polynomial kernel, unless NP C coNP/poly.

To prove this theorem, we will use the Definitions (62, 63) mentioned in section 5.3.
We use Theorem 64, for which we consider SACS on trees as analogous to language L,
which is shown to be NP-complete when the critical set C is the set of all leaves [53].
First we give a lemma that we will be using in the proof.

Lemma 66 (Choudhari et al. [18]). For a given instance of SACS (T, r, C, k), where T is
a full binary tree with root r, height h, and k = h, if more than one vertex is protected
at a depth d < h, then more than one leaf burns.

Proof. Consider a case when more than one firefighter is placed at a depth d < h.
It is easy to see that at most 1 firefighter can be placed at depth 1. Therefore, more
than 1 firefighter will always be at depth d > 2. Also, at any depth d > 1, there
are 2¢ nodes, which is strictly greater than the number of odd time steps at which
the firefighters are allowed to be placed. This says that all the nodes at a particular
depth d > 1 cannot be protected by firefighters. Therefore, at any depth d > 2, there
are at least two subtrees that are unprotected and can be burnt. And thus, given the
constraint that at most one firefighter can be placed at any allowed time step, there is
at least one subtree that is burnt and can never be completely protected/saved by the
firefighters.

However, one of the strategies to let only one leaf burn is to fix a path from the root to
a leaf and keep protecting the siblings of the nodes on that path. This will be clearer
as we go ahead in the proof of the current theorem. i
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Lemma 67 (Choudhari et al. [18]). The unparameterized version of SACS restricted to
trees cross composes to SACS restricted to trees when parameterized by the number of

firefighters.

Proof. We take an appropriate equivalence relation R such that R puts all the mal-
formed instances into one class and all the well-formed instances are grouped into
equivalence classes according to the number of vertices of the tree, and number of
firefighters (parameter k) required to save the critical set C. We assume that we are
given a sequence of t instances (T;, s;, C;, k)l?:1 of the unparameterized version of SACS
restricted to trees, each rooted at s;. Note that each of the t instances belongs to the
same equivalence class i.e. for all the instances k is the same. Also, consider that
t = 2", for some h > 1, else, we duplicate some instances and the duplication at most
doubles the number of instances.

Using these t instances, we create a new full binary tree T’ as follows. Let T’ be rooted
at s/, and h be the height of T’ (2" = t). For each leaf i € {1,...,t}, replace the it
leaf by the instance (T;, s;, C;, k) and now, set k" = k + h = k + logt. Observe that, for
T’ the set of all leaves is the union of the leaves of the instances T; i.e. U§:1Ci-

To prove the correctness, we show that the tree T’ formed by the composition of t
instances saves all the leaves with k’ firefighters if and only if there exists at least one
instance T; for i € {1,2,...,t}, that saves its critical set C; (i.e. the set of all leaves)
with k firefighters.

Suppose, T’ has a successful firefighting strategy. Then, from lemma 66, it follows
that the firefighting strategy that saves all but one root s; of T; is the one that protects
exactly one vertex at each depth of the tree. This costs exactly log(t) = h firefighters.
Thus, after 2h time steps, there is exactly one vertex s; (the root of instance T;) which is
on fire. And the critical set C; for the instance (T;, s;, C;, k) is saved using k firefighters.

Now suppose, there is an instance (T}, s;, C;, k) that has a successful firefighting strategy
with k firefighters. Thus, the leaves C; of this instance are saved by the firefighting
strategy with k firefighters. Now, the goal is to save all other leaves (U]t.:lC O\Ci. T’
being a tree, there is an unique path from the root s to the node s; (i.e. the root of the
instance T;). Denote the path as P = (s,v1, V2, . . ., Ulog(r)-1, S;). Note that each node v;
is at depth j and s; is at depth log(t). Let uy,uy, ..., Ulog(r)-1,Sj be the siblings of the
nodes vy, s, . .., Ulog()-1, S; ON the path P respectively. Now, the firefighting strategy
that protects the sibling u; of node v; at time step 2j — 1 and sibling s; of the node s;
at time step 2h — 1 = 2log(t) — 1 saves all other leaves of T’. O

5.6 Fixed Parameter Intractability

A natural question to ask about the FPT algorithms is: Can we always have a FPT
algorithm for a problem for any choice of the parameter? And the answer is “No”.
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Let us now give an example of a parameterized problem that is unlikely to be fixed-
parameter tractable. Consider the VERTEx COLORING problem, where, given a graph G
and an integer k the aim is to answer whether G has proper k-coloring. A k-coloring
is said to be proper if for every edge (u, v), both u and v are colored differently and the
total number of colors used is at most k. But, it is well-known that VERTEX COLORING
is a NP-complete for k > 3. Which means that it is NP-complete even for a small value
of k (say, k = 5). Therefore, if we expect that VERTEX COLORING, say for k = 5, has a
FPT algorithm with the time complexity of the form f(k) - n¢, then this would imply
P = NP. Note that, expecting even a XP algorithm, where the running time is of the
form f(k) - n8%) would again imply P = NP.

Therefore, from the VERTEX COLORING problem it is clear that there are parameterized
problems that do not admit FPT algorithms. But the question is can we explain
precisely why were we not able to give an efficient algorithm even when the number
of colors is small. In complexity theory, if we are unable to design a polynomial-time
algorithm for a problem then it is quite likely it is NP-hard. So, on similar lines, can we
use the theory of NP-hardness to show negative evidence for the FPT algorithm. If we
are unable to get an algorithm for a parameterized problem with the time complexity
of the form f(k) - n¢, is it because the problem is NP-hard for some fixed constant
value of the parameter k, say k = 5 or k = 100? Let us look at another example — the
CLIQUE problem.

In the CLIQUE problem, given a graph G, the goal is to find a set of k vertices that
form a clique, that is, a set of k vertices such that there is an edge between every pair
of them. One of the easy O(n*) algorithms is to check for a clique on at least k vertices
in O(k?) time, for every (Z) subset of vertices of size k. This algorithm has a time

complexity of the form f(k) - n¥%) and is an XP algorithm. Running this algorithm
for say n = 10000 and k = 5 is kind of hopeless. Till now there is no evidence of
a FPT algorithm for this problem. Also, it is clear from the O(nX) XP algorithm that
the k-clique problem is not NP-hard for a fixed value of k. Because, if the CLIQUE
problem had been NP-hard for a fixed value of k, then the O(n*) algorithm, which
is polynomial-time algorithm would imply P = NP. Thus, this says that using the
theory of NP-hardness in this way is not sufficient to rule out the possibility of a FPT
algorithm for a CLIQUE problem. That is, the problem being NP-hard is not enough to
explain the existence of an XP algorithm but no FPT algorithm.

As the theory of NP-hardness lacks in differentiating between the problems with time
complexity f(k)-n8® and f(k)-n the hierarchy of classes of parameterized problems,
FPT C W[1] C W[2]...W[SAT] € W[P] C XP, i.e. the W-hierarchy was introduced
by Downey and Fellows [26, 24, 25]. As compared to the aspect of NP-completeness
where there are a huge number of equally hard problems that are reducible to each
other, in the case of parameterized problems the situation is different. Even the basic
parameterized problems such as CLIQUE (W[1]) and DoMINATING SET (W[2]) seem
to occupy a different level of hardness and thus the notion of hierarchy was proposed.
This theory of W-hierarchy helps us to prove that the problem is not FPT even if it is
polynomial-time solvable for a fixed value of the parameter k, under certain complexity
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assumptions, and also helps to categorize the problem in the hierarchy depending on
its hardness. As similar to the notion of polynomial-time reduction which is used in the
proofs of NP-hardness, there is an analogous notion of reduction for parameterized
problems.

Definition 68 (Parameterized Reduction [19]): Let A,B C X* X N be two parame-
terized problems. A parameterized reduction from A to B is an algorithm that, given an
instance (x, k) of A, outputs an instance (x’, k") of B such that

1. (x, k) is a yes-instance of A if and only if (x’, k) is a yes-instance of B,
2. k' < g(k) for some computable function g, and

3. the running time is f(k) - |x|°) for some computable function f.

Given this definition, the following theorems about the parameterized reduction from
one problem to another are analogous to that of polynomial-time reduction in case of
NP-hardness.

Theorem 69 ([19]). If there is a parameterized reduction from A to B and B is FPT,
then A is FPT as well.

Theorem 70 ([19]). If there are parameterized reductions from A to B and from B to C,
then there is a parameterized reduction from A to C.

To have a better understanding of parameterized reductions let us describe some
examples here.

* INDEPENDENT SET and CLIQUE: Observe that, an independent set in a graph
G is a clique in the complementary graph G. Therefore, the size of the maximum
independent set in the graph is the same as the size of the maximum clique in the
complementary graph. Note that, given an instance (G, k) of INDEPENDENT SET,
creating an instance (G, k) of CLIQUE is polynomial-time reduction. Moreover,
this is a parameterized reduction, where g(k) = k is a trivial bound on the new
parameter as k’ = k. Also, a similar parameterized reduction works in other
direction as well, i.e. from CLIQUE to INDEPENDENT SET. Therefore, both these
problems are equally hard and we can say that one of them is FPT if and only if
the other is.

* INDEPENDENT SET and VERTEX CoveER: There is a nice connection between
the independent set in the graph and the vertex cover. A very well known fact
is a graph G with n vertices has an independent set of size k if and only if it
has a vertex cover of size n — k. Thus, (G, k) is a YEs-instance of INDEPENDENT
seT if and only if (G,n — k) is a YEs-instance of VERTEX COvER. But notice
that, this reduction is a polynomial-time reduction but not a parameterized
reduction. Here, the parameter (k') for the VERTEX COVER problem is n — k
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which is not just a function of k and cannot be bounded by some function g(k)
given the dependence on n. Also, recall that the VERTEx COVER problem is FPT
when parameterized by the size of the vertex cover. Thus, the existence of a
parameterized reduction from INDEPENDENT SET to VERTEX COVER would imply
(Theorem 69) that INDEPENDENT SET is FPT as well, which is not true.

Given this understanding of the parameterized intractability, we present an intractabil-
ity result for a variant of the Firefighting problem. In this problem, which we call as
the Spreading model, as similar to the fire, the firefighter “spreads” as well. That is,
at every even time step, if a firefighter is present at some node v, then it extends to
all neighbors of v. In the next section, we describe the problem more formally and
present the intractability result.

5.6.1 The Spreading Model

The spreading model for firefighters was defined by Anshelevich et al. [1] as “Spread-
ing Vaccination Model”. In contrast to the firefighting game described in Section 5.2,
in the spreading model, the firefighters (vaccination) also spread at even time steps as
similar to that of the fire. That is, at any even time step if there is a firefighter at node
v;, then the firefighter extends (vaccination spreads) to all the neighbors of v; which
are not already on fire or are not already protected by a firefighter. Consider a node v;
which is not already protected or burning at a time step 2j. If u; and w; are neighbors
of v;, such that, u; was already burning at time step 2j — 1 and w; was protected at time
step 2j — 1, then at time step 2j, v; is protected. That is, in the spreading model the
firefighters dominate or win over the fire. For the spreading model, the firefighting
game can be defined formally as follows:

* At time step O, fire breaks out at the vertex s. A vertex on fire is said to be
burned.

* At every odd time step i € {1,3,5,...}, when it is the turn of the firefighter,
a firefighter is placed at a vertex v that is not already on fire. Such a vertex is
permanently protected.

* At every even time step j € {2,4,6,...}, first the firefighter extends to every
adjacent vertex to a vertex protected by a firefighter (unless it was already
protected or burned), then the fire spreads to every vertex adjacent to a vertex
on fire (unless it was already protected or burned). Needless to say, the vertices
protected at even time steps are also permanently protected.

In the following theorem, we show that in spite of the spreading power that the
firefighters have, SACS is hard.

Theorem 71 (Choudhari et al. [18]). In the spreading model, SACS is as hard as
k-DOMINATING SET.
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Proof. Let (G, k) be an instance of k-DOMINATING SET problem. We construct a graph
G’ as follows. Add 2 copies V(Y and V® of the nodes V(G) in G, i.e. for each node

v; € V(G) add nodes Ufl) and vfz). Add a vertex s, the vertex from where the fire
(1)

breaks out. For each vertex v;” € V(1) add a path of length k from s (i.e. a path from

(1)

s to v, would be like (s, u;, ..., Uj_,, vfl))). Similarly, for each edge (v;,v;) € E(G),

51) to UJ(.Z) fz) to U](.l) inG’.
Also, for each v; € V(G) add a path of length 2k from vgl) to vl@. Let C = V® be the
critical set and k” = k.

add a path of length k from v , and a path of length 2k from v

We claim that, SACS on (G',s,k’,C = V®) is a Yes-instance if and only if k-
DOMINATING SET is a YEs instance on (G, k).

Suppose that, G has a k-dominating set K. Then the strategy that saves the critical

set C is the one that protects the vertices vgl) e VD corresponding to the vertices v; in

the dominating set K. The nodes v; € K being the dominating set, the corresponding
nodes v'” € vV dominate all the nodes vJ(.z) € V@, And thus, the firefighters on the

i
)
1
to all the nodes in V() before fire reaches to any node U](.z) e V@, Also, protecting the

nodesv;’ € vV corresponding to the dominating set K, eventually extend firefighters

vertices UED e V) corresponding to v; € K is a valid firefighting strategy as per the
Definition 28.

Suppose thath) : [k] — V(G’) is an optimal firefighting strategy for (G’, s, k', C = V).
Let S = {uj,...,ux} be the set of vertices which are protected by the firefighting
strategy, i.e. D(i) = u; for i € [k]. Note that, as per the definition of the firefighting
game, i'" firefighter is placed at a time step 2i — 1. Lets denote the paths from the
nodes in V() to the nodes in V%) as P, for q € [1,2m + n]. Observe that, an optimal
firefighting strategy would not have (1) two distinct firefighters u; and u; for i # j on
the same path P, and (2) two distinct firefighters u; and u; for i # j on the paths Pg,

1) ¢ v, As for both the conditions, it

i
is better to have one firefighter on the node vfl) e V) on which the paths incident.

Hence, we can assume that at most one firefighter is placed on any path P, and at most
(1)

i

and Py, that are incident on the same node v

one firefighter is placed on the paths incident on vertex v.”’. Moreover, if a firefighter

is placed at any node p; on a path P, between vgl) e v and UJ(.Z) € V@, then, in 2k

time steps it can extend protections to none other than vgl) e v, v](.z) e V@, and

the intermediate nodes on the path P,. It can be said that any node on a path P, has
(1)

;€ V) within in a diameter of 2k. Thus, placing a firefighter on

any path P, is equivalent to placing a firefighter on the vertex vgl) on which the path

P, is incident. Therefore, in the firefighting strategy S, if u; is a node on a path P,
which is between v)(Cl) e v and v}(,z) € V@, we push back the firefighter to v,(cl) e v,
As the fire reaches V(! in 2k time steps, there can be at most k nodes vl.1 e v on
which the firefighters are placed at the allowed time steps. Therefore, there is at least

exactly one vertex v
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1
one vertex Ug )

e V(U that is burnt. And thus, if the firefighters are not placed on the
vertices Ufl) € V() that form a dominating set in G, then there is at least one path to

a node UJ(.Z) € V@ at which the firefighters cannot extend protection. i
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Chapter 6

Conclusions and Future Work

With the goal of understanding information diffusion in social networks, we have
proposed two generative models, viz. Hidden Markov Hawkes Process (HMHP) and
Dual Network Hawkes Process DNHP that model cascades of information diffusion.
Both the models account for topical interactions along with user-user influence and
user-topic patterns. As opposed to HMHP and other state-of-the-art models, in DNHP,
the rate of generation of events by a user is dependent not only on the user but also
on the topic or the mark associated with the event. In DNHP the topical interactions
and the user-user influence weights are coupled and the joint estimation of these
parameters enables the flow of evidence across these parameters. In case of HVIHP,
empirical results show that the use of topical interactions and collective inference
leads to a more accurate reconstruction of network strengths, diffusion paths and
event topics on the semi-synthetic datasets; it also fits the real Twitter conversations
better (in terms of test likelihood) as compared to other state-of-the-art models.

For DNHP, modeling over the dual space of users and topics along with the topical
interactions and joint inference play a crucial role in outperforming the state-of-the-art
models in terms of reconstruction and the generalization performances.

This thesis also makes an effort to develop algorithmic approaches to moderate the flow
of (mis-)information in social networks; we have presented one such algorithm and
characterized its complexity in the parameterized complexity setting. This problem
was formalized as the Firefighting problem, where the spread of fire on the graphs
is analogous to that of the spread of an infection in the networks. However, in the
Firefighter problem, the flow of fire or infection is considered to be deterministic
and thus the fire flows to all the unprotected neighbors of the node in the next time
step once the node is on fire. Keeping this setting in mind, we defined the problem
Saving a Critical Set (SACS) where the goal is to protect a set of nodes from the fire
with the help of at most k firefighters; k i.e. the maximum number of firefighters
is the parameter of the problem. We showed that the problem is para-NP-complete
even when the size of the critical set is 1. We proposed a faster algorithm with time
complexity 0*(4%) for SACS when the problem is restricted to trees. However, it
turns out that SACS does not admit a polynomial kernel for trees. Additionally, we
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present a FPT algorithm for SACS on general graphs with running time complexity
f(k) - O(n®m) where, f(k) = kOPok),

6.1 Future Work

In the case of both HMHP and DNHP, the number of distinct topics that is used to
fit the data is considered to be fixed. However, in the real world, the number of
topics increases as more and more data is seen. Therefore, incorporating an infinite
number of topics (Bayesian Nonparametric) in the models is one of the potential
future directions. Currently, the held-out log-likelihood calculation for both HMHP
and DNHP is based on a heuristic. Calculating the exact log-likelihood is hard to
the best of our knowledge. Surprisingly, despite a wealth of literature on cascade
modeling, this question of calculation of log-likelihood for cascade models has not
been studied carefully. Thus, designing an efficient algorithm for the calculation
of log-likelihood exactly or approximately with theoretical guarantees is one of the
potential future questions that we wish to answer.

Additionally, the prior over the topical interaction network is considered to be a
complete graph both in HMHP and DNHP. Currently, we have no knowledge of appro-
priate priors that can incorporate structure over the topics. However, we believe that
incorporating structural knowledge about topics (or marks) can help in improving the
existing knowledge-bases (e.g. DBpedia) using the cascade evidence from the models.
Furthermore, we intend to study the question of whether inferring topical interactions
in a text even-stream corpus, using DBPedia as a prior can, in turn, suggests missing
edges in DBPedia by identifying topics that frequently influence one another.

In the case of the Firefighter problem, in all studied literature, the spread of fire is
considered to be deterministic. However, we believe that for the model to be made
more realistic and interesting it will be appropriate to study the variant of the problem
that considers a probabilistic spread of fire. Furthermore, right now the graph on
which the Firefighting problem is played is considered to be a static graph. We think
that it will also be interesting to define and consider the Firefighting problem when
the edges in the graph are added or deleted over time.

Furthermore, it seems possible to further study the Firefighter question in the Bayesian
information propagation setting that is used in HMHP and DNHP. We could perhaps
model the “fire” propagation as depending on user interests and influence, and “plac-
ing a firefighter” can correspond to exposing the user to alternate points of view (i.e.
changing her vector of topic affinities), thereby moderating her propensity of “catch-
ing fire”. It will be interesting to see whether the algorithmic machinery developed in
the firefighting literature can be adapted to be used in such settings.
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Appendix A

Hidden Markov Hawkes Process
(HMHP)

A.1 Conditional Probabilities for Gibbs Sampling

A1 Topic Assignment Conditional Probability

The probability of assigning a topic k to an event e conditional on all other parameters
is:

P(ne =k | n_e,2,W,a,B,y, W, ) (A1)
= P(ne = k | we, N5, Mp,, 2, W, Wo,, @, B, y) '

Where, w, is the vector of all words that belong to document of event e, Wﬁe and Wy,
are the words belonging to the documents those are not descendants of event e and
the words that are in the documents corresponding to the descendants of event e. 7
are defined on the similar lines. The influence matrix ‘W and the base intensities g do
not play any role in topic assignment and hence can be removed from the conditioning
part. Using Bayesian rule, the above equation can be written as:

P(’]e = k | wes nEe, n@es z) Wﬁe)WENaJBJ Y)
o P(Uﬁe: Me = k: ’lbe> WEg) We, W@JZ: a, B) Y)
= P(Wﬁe’ we: Wbe|n2 Z, a: ﬁ, V) X P(nﬁe’ ’76 = k) nl}e'z’ (x: ﬁ) V) (AZ)

Now, considering z, = €', ., = k’ and solving each of terms from the above equation
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individually (ignoring the terms related to y for simplicity):
P(']Ee\{e/}: Mer = k,) Mle = k, My, | z,a, B’ V) = \/7'_P(7~3 'lﬁe; Mle = k, 'IDJZ)dT

= [Tp) - png 5.7 - o = King 2.
P17 15,1 = b 2)AT

K (Ce)

/HPW‘WHH?{# a7 <[] ar

=1 U= m’=1 =1 I'=1
The fourth term here corresponds to the events those are child events of event e.

K K K K (=[Ce]) K (®e) (Ce) (ce>
—1 N’, (e) N +N +N
- S L | e (1 o

m’=1

(A.3)

In the second equality of the equation above ‘7;(1);) indicate the probability of event

with topic k’ (parent event of event e) influencing event with topic k (event e) i.e.
probability over the edge (z,, e); and the count of the edges in the set D, (descendants
of event e) are split into two disjoint sets: 1) the count of edges over child events of

event e and 2) non-child events of event e. In the third equality the terms from D,
(~[Cel)
_ NC
and C, are combined to give a term (—[C,]) (i.e. the term 7, """ ).

Ll
Therefore,

P15\ (ery ey = K's e = K, M1p |2, @, B, y) =

/ ( K 1 K 1) K K NGl ( K N N +N£Ce))
7—‘31/— . 7- g . e (i" m’ m dT

| | | | L | || | L k km’

T B(B) m "

/=1

K (=[Ce))
1 k'_1+N/ /e
x/ (—]_[ vy X T dTe
B(B) , ’
T

1 59 Bu- 1+N(“e,+N(Ce),+N,(fni)dT
X A k.m’ k
7. B(B) ’
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K De), p7(Ce) (Ce)
1 ,1+N(e Ne+Ne
X/ ||7ﬁ m kde
Tk

BB+NI 1 1) p@+ N+ N 4 N
= X
B(B) B(B)

The terms related to the topics other than k and k” cancel out because of the denomi-
nator. The denominator for the equation A.2 is similar to that of the numerator with
the topic of event e excluded, and thus, can be written as:

(A.q)

P(U5 \{e’}? Mer = k/ Me = k) n@elza a, ﬁ) Y)
BB+ NI 1 1) BB+ N+ NG 4 NG

B(B) o B(B)
BB+ N, ) BB+ N + N
BB) B(B)
K leD (-lce) p B, N 4 @
n%;li T+ Ny ) X TBic+ Ny j 7+ 1) [Ty TBr + Ny + N + Ny i)
B r(%8) + NI 1) NS B) + N 4 NG 4 N©)
K Cle Clcdy 5
H%;l( T+ N ) X TG + N ™) 15, T(By + N}E V) N]Ecl/))
= ’ De .,
r«z B + NIED) r(ZyB) + N + N

T'(Br +N(ﬁ ) 4 1)

(Ce)

- De e e .
F((Zzﬁz)+N( D1y T T B+ NE + NG+ NG )

(-lce) (Ce)
r(ﬂk + N 'k ) fvl ((Zl’ﬁl) + N(kbe) + N(kCe) + N;Ce) _ l)
(3, 8) + NIED)

_ o D, C, C)
Ge+Ng) LT e+ + NS+ NG NG )

(A.5)

- D) 5 G o .
((Zlﬂl)+Nk/ ) l 1 ((Zl'ﬂ)'i_Ng( )+N§< )+N§< )—l)
When k” # k i.e. parent event topic is not same as the event topic k (currently that we

are trying to assign), then N(Tl[(ce]) = NIETE‘*) = Ny x — 1. Similarly, Ng[c&]) = N?Jpe) =
Ny — 1. ’ ’
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Therefore, when k’ # k

P(nie\{e/}) T]e/ = k,) Ue = k: nbe |Z, a) ﬁ: Y)
NG D, c c) .
Bk + Nk — 1) My 1 B + Nzg,zf) + ng,zi) * N,Ej) 1)

« X
(B +Nw—=1) N S B oA D
| [Ti5y ((Zz'ﬂ1)+N§< )+N§<C)+N§{C)_l)

(A.6)

When k’ = k i.e. parent events topic is same as the topic of the current event, the term
7;@,:) in Equations A.3 and A.4 will be replaced with 7;(;2‘3). And thus the term related

to the integration 7/ has no change and can be canceled out from the denominator.
Thus, the only term that remains is the term related to the integration 7 along with

an additional term 7;(;38) . Thus Equation A.4 can be written as:

P(Uﬁe\{e/}: Ner = k: Ne = k’ ’71)8|Z: a, ﬁ’ V)
BB +N + N 4 N+ NPy BB+ N+ N+ N 1)

(A.7)
B(B) B(B)
Solving further, we can write the probability as:
P(Tlﬁe\{e,}, Mer = k: Mle = k) nDe |Z: a, B: y)
NG ) C C) NG+ D C C) -
[ T1 B+ NG+ N2+ NG = T (B NG+ NG + NG =
(Ce) = —
Y (B + N NG L N )

(A.8)

C) 4 1 = NUCD, Therefore, the

Note that, for I’ # k, N = N'D and for I’ = , N by

k,l’ kU
above equation can be written as:

P15, (oy ey = Ko le = K, 113, |2, @, B, V)
Ic

el — —
N D, C. Ce .
15, T1.5 B + N,E’l,) + N]E,l,) + N,E’l,] — )

N[Ce] (A’g)

’ 53 C. C, )
Hi=k1 ((Zl/ﬂl) + N;{ ) + N;{ ) + N][{ ] i)

Note that in the above calculation we have ignored the terms related to y i.e. the
terms related to the matrix U (user-topic count matrix). However, for the case when
event is having a parent event the terms containing to y or !l would not play any role.
For the other case when the event e has no parent, it could be solved by symmetry.

Now, solving for P(W5 ,w,, Wo,|n, 2, @, B,y). Let W be the list of all the words in
all the documents (i.e. W = w, U Wp, U W5 ), W is the vocabulary set and T is the

140



topic-word count matrix.

P(Wﬁe’ we, Wo,n, 2, a,B,y) = PW | n, a, rest) = /{P(W|n, P (&la)dg

W] K K . Ko N
_ /ﬁ L 1—[ Zaw+lk,w—1dc _ ﬁ L/ l_[ Caw+Zk’w_1dC
= ¢ =1 B(a) e k,w - L] B(a) G b ) kw k
K B(a + %)
) B B(—a)k (A.10)

If we had been writing the complete term in the above equation along with the
marginalized denominator (from eq. A.2) then most of the terms would cancel out
and the only terms that remain would be the terms related to the words in the
document of event e (as the only difference in the likelihood and the marginalized
likelihood is the count of words in document of event e). And thus the above equation
can be simplified as follows:

Né"e—l —e .

[Twed, Hi=1 (o + Ez:k,w +1)
Ng—1 . .
Hi:di ((Zwev (Xw) + zke + l)

where, Ny, is the number of words in the document corresponding to event e and N}/

is the number of times word w appears in document corresponding to event e. Note
that, Ny, = T¢, and NS’ =3 o Therefore, the update rule for topic assignment can

be written using Equations A.6, A.9, A.10 and A.11 as follows:

(A.11)

P(Wﬁe, Wwe, WDe | Me = k, Ny, nﬁe, o, rest) oc

if z, # 0:

1. 1y, = k', and k" # k:

(Bx + Niv e — 1)
((XB) + N = 1)

P(ne = k | w€, nze = k,, nﬁe\ze, nbe’ z} WEE)W®e7aJﬁ) y) o

(Ce)

N 4 5e Ee Ce .
[, 1Y B + NG+ NS+ NG -

N(Ce) o) — )
M (SeBr) + N+ NG+ N )
NY -1 )
[Twed, Hi=di (o + z;:,iu +1)

Ng,—

X 1
Hizl ((Zwev aw) + z;e + l)
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(Ce)

—1Pe N ’ -1 @ e .
B+ NOPY TS T B+ NS+ N+ )

X
(=pe) NC_q 3 .
((Zlﬂl) + N ) i:kO ((Zl’ﬁl’) + N;{ e) + Ngcce) + l)

NY -1 .

Hwed H. e (aw+T‘3 +1)
X

T (Spey ) + T +1)

N(CP;)—
Be+ N T I Br+ NG +0)
X
(=pe) NG _q . .
(ZP)+ N T () + N + 1)

[Moc, [T (o FTE 4 )
X
1 (Sey ) + T8 +1)

(A.12)

2. Nz, = k', and k' = k:

P(’]e =k | We, Tz, = k: ’l5 \Ze 7”36) z, Wﬁeawbe:a:ﬁ Y) x

(Ce (Ce) f— j—

K kl' (D ) (C ) (Ce . Nkk +1 (be) (Ce) (Ce) .
H%jik 1 Br ANy + N + N —OX iy Bt N+ Ng» + Ny = 1)
N(Ce)+1 ) c C) .

((Zl’ﬁl)+N( )+N( e)+N( e)_ )
Hwed H - (aw"'z_‘e +1)
X Nde —e
((ZwEV aW) + z + l)
N(Ce,)— 3, c) NGO = =
M, ML + NG+ NG+ i) x T B+ NS + N + 1)
_ '+
- e @), i@, .
10((21, DHEN T+ N +1)
[Twed, H. de (aw+izﬁe + 1)
N b |
e (Swer @w) + TC+10)
N(Ce/)_ [C. (Ce) )
[T, T B+ NGID i) T (B + NI 4 )
U#k

(Ce)

10<<21B>+N“ + 1)

Hwed H . (aw + z_'e +1)
X —— (A.13)
[1.55 N(Swer aw) + T+10)
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ifz.=0:

P(Ue = k | we, nfe’ n@eaz) Wie)WfDe) aaﬁs Y) %

N(Ce)
i=

K i 5(& Ee Ce .
Y+ Ui —1 || o H_k1l B + ng,z/) + ng,z') + ng,z') -0

X
K+ U, -1 N ’ . Ce e ;
(X ve) T (50 By + N+ NC) 4 N )

w

N -1 ,
[Mwea, [T, (aw + T, )

X Ng,—1 —e .
Hizl ((Zwev (Xw) + fz:k + l)
(Ce) _

(—e) K Nk,l’ 1 (=Ce) .
Vi + U vor 2y Br+ N+ i)

T (Sero + a9 R c
kVk v i:k() ((ZZ’BZ') + Nk ‘+ l)
Ng,—1 —e :
Hwede Hl’=0 ((Xw + Ez:k’w + l)
Ng,—

X 1
Hl’:() ((Zwev O(w) + z;e + l)

(A14)

A.1.2 Parent Assignment Conditional Probability

P(ze = ellEt: Z—e, n: a, B: )’, (W: ’1) = P(ze = ellEt: n: Z<es ZQE: B; Y, (W, 11)
& P(z<€3 Ze = e/J zbes nlEt, ﬁ) V, (WJ "1) (A15)

P(z<e; Ze = e,) Zbez I’|Et1ﬁl )’, W} ’1) = P(zielEDﬁJ V, w:p)
X P(Ze = €,|ZEE, Et: ﬁ) V; (W) P) X P(zbelzﬁe: Ze = el: E[J B: V) (W; P)
X P(’”Z: Et: 31 Y) W; p) (A~16)

Let us solve the terms related to the P(2;) and the terms related to the P(n),) separately.

Solving for the n, first. We would integrate out the 4 and split the n, so that we can
take into account the probability related to n, given its parent z. distinctly, as that
would be one of the terms that would change with change in parent assignment.

P(n | z,E.,B,y,W,n) = P(ng, |2, E., B, W, 1) X P(ne = king; , 2, Ee, B, W, )
X P(UDJ"I@: Mle = k: z, Et:ﬁ: W, }1)

= [ RT3 pP(rg 2. B T, W) X Pl = Kt 5, B T W)
A

X P(Np,In5,,ne = k, 2, E, T, W, m)dT
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K
= (l_[ P(ﬂ)ﬁ)) P(n<e|z Et:T(W P) Xp(ne - k|’713 ,Z Et:T(W P)
T \i=1

XP(”D In@ Ne =k, 2, E, T, W, m)dT

(@e) K K (e)
_ Br—1 sz' (Pe) Ny
= (,3 7;1'1 nn L X Ty X nn,il,l a7
=1 U= =1 I'=1
K K (@e), 7y (De)
r—1+N TN
= 1_[ - r[?l"?,l + Ll Ll dT
iz BB) Jripg
1k’
]_ K l’_1+N]((r®6)/ N]((IQE)/ (p)
X / B—) 1_[ K m’ d(i—’ T ¢
T m'=1
K K
_ l_[ 1 / l—[7ﬁl,—1+N“,dT
=1 B ) Tip=1 .
1#k’
/ 1 ﬁ 7ﬁl’—1+N,(ji,)1/d7_, 7-(13 )
X . XTI
‘7-k' (B) m’=1 k’m k k' k
K B (e) B(ﬁ + N(_‘Pe) 1)
G 1+Nk’m’ (pe)
o 7’? , AN T = (A7)
(/7. ,l,__[l Kom ") Kk B(B)

Here, Ni?pe) indicates the number of times the topic-topic combination (k’, m), for
m € [1,K] was found without considering the parent assignment of event e i.e.
without considering the count over the edge (z., e).

Solving for the z; now. For any e; € E at node u,, at time t,,, neighborhood set
given by N (u,,) and the parents for all the non-descendant events of e; given, P(z,, =
f'lz5 , Et, W, p), where f” € N(u,,) can be written as:

P(z, = |75, , B WD)

T
= n €xp (_ / huf,uel. (T - tf)d"——) huff,uei (tei - tf’) (A.18)
tf

feE
tfstgi
ureN (u;)

Therefore, the probability for z; can be written as:

P(Zfe |Et: W) p) X P(Ze = €/|25€, Et: w: IJ) X p(zbelzfe: Ze = e,: Et: (W, ’1)
= P(21|E¢, W, 1) X P(22|%<¢,, Et, W, 1) X
X P(Ze = €/|25€, E, w: ’J) X P(Z(e+1) = e,|25(e+1); E, (W) IJ)X
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X P(z, = e’|z5n,Et,‘W, n) o P(z, = e’|zﬁ,Et,(W, H)

T
= 1_[ exp (_ / huf,ue(T - tf)dT) hue/,ue(te — ter)
tf

feE
te<t,

ureN (u)
& huef,ue(te - te’) (A.19)

Note that the proportionality sign in equation A.15 is because of neglecting the de-
nominator, which has the similar form as that of the numerator except that the parent
assignment of event e is not taken into consideration. And thus the proportionality
in the second step of above equation is because all the other terms are similar in
the denominator and thus can be canceled out. Also, the proportionality in the last
or fourth step is because the exponential term is same for all the values of parent
assignment and thus can be neglected.

Thus, the update for parent assignment of an event e can be given using equations
A.19 and A.17 as follows:

B(B + N?{Tpe) +1)
B(P)

Note that, Nix = N,ifie) + 1 and similarly, Ny = N;;ve) +1.

P(ze = €'|E;, 2,11, 0, B, Y, W, 1) < X hyu,(te = ter)  (A.20)

Therefore, considering the denominator with exception to parent assignment of event
e, the above equation can be simplified further as:

(Br + Ny — 1) »
(Cr_1Bk) + N — 1)

Working on similar lines, the probability of assigning no parent to the event e which
was triggered at node u, at time t,, can be given as:

(Yk + uue,k - 1)
(Ziey ve) + Wy, = 1)

P(Ze = e/lEt: Ze, ’I, a, B} )’, (W) ’1) x huef,ue(te - te’) (A.21)

P(Ze = 0|Et9 Z—|e: ") a’BJ Y, (W> ’1) %

Xy, (te) (A.22)

A.1.3 Conditional Probability for User-User Influence

P(Wu,v =X | (Wﬁu,v: E,z,n,W,a, B: 12 IJ) = p((Wu,v =X | Egu,U): Z) (A.23)

where, Efu’v) denotes the timestamps of the events those are at u and have triggered
events at node v. The simplification in the above equation is because W,, ;, is dependent
only on the parent assignments, and the time at which the events are generated

(specifically, Eﬁ”’“)).
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Using the Bayes rule we can write it as:
P(W,, = x | E™, 2) o P(W,, = x | 2) x P(E™" | Wy, = x, 2) (A.24)

Where, the first term on the RHS is the conditional prior and the second term is the
conditional likelihood. The likelihood term can be written as:

T
P(Egu,v) | Wi =x,2) = 1—[ exp (— / he, (T = te)dt) 1_[ Re, e, (ter — te)
te

e€E e’€eE
Ce=U Co’ =V
Zor =€

T
= 1_[ exp (_/ (M/ce,vfce,v(f - te)dt) 1—[ (M/ce,ce/fce,ce/(te’ —te) (A.25)
te

ecE e’eE
Ce=U Co’=U
Zor=e

Thus, the conditional in Equation A.24 can be written as:

P((Wu’v =X | Eguﬂj), Z) (o d P((Wu,v =X | z)

T
X - (ch,v ce,u\t — te dt (ch,ce/ CesCo’ ter — te (A- 6)
[ |exe [ Westiate =it [ Wefat )|

ecE e’€E
Ce=U Coe?=U
Zor =€

Using Gamma prior with parameters (ay, ;) for P(‘W,, = x | 2), then the previous
equation can be approximately written as:

1
P(Wyy=x| EE“’”), Z) o xeNwvta=1 o exp (—x (Nu + ,B_)) (A.27)
1

Which is again a Gamma distribution with parameters 0(/1 = Nyy+a;—1and ,B'l =
1

1
(N“+ﬁ_1)
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